Патенты автора Волынский Денис Валерьевич (RU)

Изобретение относится к волоконной оптике, в частности технологии одномодовых кварцевых световодов с сердцевиной, легированных диоксидом германия. Способ включает нанесение слоев стекла сердцевины, высокотемпературное сжатие кварцевой трубы с осажденными слоями за несколько проходов горелки, травление внутреннего канала фторсодержащим газом на последнем проходе высокотемпературного сжатия, сплавление кварцевой трубы в заготовку с диаметром сердцевины 3-5 мм, нанесение слоя кварцевого стекла толщиной, обеспечивающей одномодовый режим излучения в световоде. Заготовку перетягивают до штабика диаметром 1,5-3 мм, который устанавливают соосно внутри кварцевой трубы и осуществляют их совместное вытягивание при одновременном сплавлении. Из одной предзаготовки можно получить более 500 км одномодовых световодов. Упрощается процесс производства, повышается его производительность. 2 табл.

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических гироскопах интерферометрического типа. Технический результат заключается в компенсации оптических шумов источника излучения, а также уменьшении дрейфа сигнала ВОГ за счет уменьшения амплитуды волн с нерабочей поляризацией, что обеспечивает повышение точности и чувствительности гироскопа. Волоконно-оптический гироскоп содержит расположенное во внутреннем объеме защитного экрана несущее основание и закрепленные на нем оптически соединенные источник излучения, волоконный поляризатор, входной разветвитель, соединенный двумя своими портами с входами фотоприемников, соединенных с электронной схемой обработки информации, интегрально-оптическую схему, включающую поляризатор, разветвитель и фазовый модулятор, измерительный контур, представляющий собой чувствительную катушку, включающую каркас с оптическим волокном, сохраняющим поляризацию, закрепленный на несущем основании, а также схему обработки информации, информационный выход которой образует информационный выход гироскопа. Интегрально-оптическая схема сформирована в монокристаллической пластине ниобата лития. Разветвитель интегрально-оптической схемы выполнен в виде Х-разветвителя, его канальные волноводы сформированы по технологии диффузии титана в пластину ниобата лития. Свободное входное плечо канального волновода разветвителя интегрально-оптической схемы образует контрольный оптический вывод интегрально-оптической схемы, предназначенный для контроля точности стыковки интегрально-оптической схемы с оптическим волокном чувствительной катушки. Каркас чувствительной катушки закрыт дополнительным экраном из двух соединяемых внахлест друг с другом частей, охватывающих верхнюю и нижнюю части каркаса катушки, каждая из которых представляет собой кольцеобразный желоб, а в своем внутреннем пространстве содержат жестко соединенные с ней, равномерно размещенные по окружности и упирающиеся в верхнюю поверхность каркаса чувствительной катушки пружинные элементы, а в нижнюю поверхность каркаса чувствительной катушки - сферические упоры, а в пространстве между внутренней поверхностью отверстия каркаса катушки и внутренней поверхностью дополнительного экрана размещена упругая пружина. 2 ил.

Изобретение относится к области навигационного приборостроения летательных аппаратов: искусственных спутников Земли, спускаемых космических аппаратов, управляемых снарядов и ракет. Технический результат - повышение точности и помехоустойчивости. Для этого на объекте устанавливаются три приемные антенны спутниковых навигационных систем (СНС) с одним специализированным приемником, имеющим три входа, каждый из которых имеет один вход для подключения антенны, при этом опорная антенна вместе с бескардановым инерциальным измерительным модулем (БИИМ) на микромеханических датчиках (ММД) устанавливается в носовой части объекта по оси вращения, а две других с максимально возможным отстоянием по продольной оси от опорной антенны расположены по окружности со смещением 180° в поперечной плоскости. Разностные фазовые измерения СНС вращающегося объекта используются для оценки погрешностей БИИМ как по углу крена, так и углам курса и тангажа, а также для оценки погрешностей масштабных коэффициентов гироскопов и акселерометров, в том числе установленных по продольной оси объекта, вокруг которой осуществляется быстрое вращение. 14 ил.

Изобретение относится к области навигационного приборостроения морских подвижных объектов. Достигаемый технический результат изобретения - повышение точности и помехоустойчивости системы. Указанный результат достигается тем, что заявленная система содержит бескарданный инерциальный измерительный модуль (БИИМ) с измерительным блоком на инерциальных датчиках (микромеханических гироскопах, акселерометрах низкой точности) и магнитометрах, а также приемную аппаратуру спутниковой навигационной системы (ПА СНС) с фазовыми измерениями и разнесенными на соответствующей базе антеннами при выработке курса объекта. При этом в измерительный блок БИИМ дополнительно включают волоконно-оптический гироскоп навигационного класса точности с измерительной осью, ортогональной плоскости палубы, причем БИИМ, кроме параметров ориентации (курс и углы качки), осуществляет дополнительно выработку составляющих вектора линейной скорости и координат места объекта. В вычислительный модуль системы дополнительно поступают данные от судового лага для формирования совместно с данными от блока магнитометров соответствующих разностных измерений и их обработки с целью реализации автономного режима работы системы; при этом в вычислительном модуле системы дополнительно осуществляют оценку погрешностей БИИМ по составляющим вектора линейной скорости, а также оценку дрейфов микромеханических гироскопов и волоконно-оптических гироскопов (ВОГ) и их подачу по обратной связи в БИИМ для коррекции.8 ил.

Изобретение относится к области навигационного приборостроения подвижных объектов различного назначения

Изобретение относится к измерительной технике в гироскопических системах ориентации и навигации подвижных объектов различных типов и может быть использовано для малогабаритных морских и наземных объектов

 


Наверх