Патенты автора Тимошкин Вадим Владимирович (RU)

Изобретение относится к измерению электрических величин и может быть использовано для определения активной мощности в трехфазных сетях переменного тока. Способ измерения активной мощности в трехфазной симметричной сети заключается в том, что измеряют датчиками тока и напряжения, работающими на эффекте Холла, мгновенные величины тока и напряжения на каждой фазе, согласуют их и приводят к стандартному виду, а затем полученные значения токов и напряжений одновременно преобразуют из трехфазной системы координат в двухфазную ортогональную α-β систему координат: где Uα, Uβ - проекции напряжений в α-β системе координат;Iα, Iβ - проекции токов в α-β системе координат;IА, IВ, IС - мгновенные фазные токи;UA, UB, UC - мгновенные фазные напряжения;полученные проекции токов и напряжений в системе координат α-β перемножают Iα⋅Uα и Iβ⋅Uβ, затем складывают и умножают на число фаз: получая значение активной мощности. Технический результат: увеличение точности измерений и быстродействия. 2 табл., 4 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных величин токов и напряжений на каждой фазе. Измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов Iα, Iβ и напряжений Uα, Uβ в α-β системе координат формируют векторы тока Is и напряжения Us: далее определяют векторное произведение между векторами Is и Us:Qγ=IS×US.Полученные проекции токов и напряжений в α-β системе координат перемножают Q1=Iα⋅Uβ и Q2=-Iβ⋅Uα, затем складывают и умножают на число фаз: где - оценка реактивной мощности трехфазной цепи.Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям: где IA, IB, IC - мгновенные фазные токи;Iα, Iβ - проекции токов в α-β системе координат;UA, UB, UC - мгновенные фазные напряжения;Uα, Uβ - проекции напряжений в α-β системе координат.Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к электротехнике и может быть использовано для диагностирования виткового замыкания в обмотке ротора синхронных генераторов. Сущность: способ заключается в определении процента замкнутых витков на основе измеренных в рабочем режиме синхронного генератора мгновенных величин токов и напряжений фаз статора, тока и напряжения ротора. Измеренные мгновенные величины фазных токов и напряжений статора преобразуют из естественной системы координат в двухфазную α-β систему координат. Используя полученные значения преобразованных токов и напряжений статора, определяют коэффициент квазиреактивной мощности Q=3⋅(Iα(k)⋅Uβ(k)-Iβ(k)⋅Uα(k)), где Iα(k), Iβ(k) - проекции токов в α-β системе координат; Uα(k), Uβ(k) - проекции напряжений в α-β системе координат. На вход предварительно обученной искусственной нейронной сети подают мгновенные величины тока и напряжения ротора, преобразованные токи и напряжения статора, коэффициент квазиреактивной мощности, а также их временные задержки 0,5 с. С помощью обученной искусственной нейронной сети выявляют зависимость между входными и выходными данными искусственной нейронной сети. О начале повреждений в обмотке ротора судят по мгновенной величине оценки процента замкнутых витков обмотки ротора синхронного генератора. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано для регулирования частоты вращения ротора асинхронных электроприводов с тиристорным преобразователем напряжения. Технический результат: обеспечение определения оценки частоты вращения асинхронного двигателя во всем диапазоне регулирования скорости с погрешностью не более 5%. Электропривод переменного тока содержит асинхронный двигатель, тиристорный преобразователь напряжения, включенный между статорной обмоткой двигателя и питающей сетью, датчик фазного статорного тока и датчик напряжения, подключенные к одной фазе асинхронного двигателя, блок управления, выход которого соединен с управляющим входом тиристорного преобразователя напряжения, а вход - с выходом блока регулятора частоты вращения, один вход которого соединен с задатчиком частоты вращения. Второй вход регулятора частоты вращения соединен с имитационной моделью асинхронного двигателя в двухфазной неподвижной системе координат, выход которого соединен с первым блоком расчета результирующего модуля тока, который подключен к блоку расчета невязки. Второй датчик статорного фазного тока и второй датчик напряжения подключены к другой фазе двигателя. К первому и второму датчикам напряжения подключен первый блок преобразования координат, выход которого соединен с блоком имитационной модели асинхронного двигателя в двухфазной неподвижной системе координат. Первый и второй датчики статорных фазных токов соединены со вторым блоком преобразования координат, к которому последовательно подключены второй блок расчета результирующего модуля тока, блок расчета невязки, блок определения оценки момента нагрузки, блок имитационной модели асинхронного двигателя в двухфазной неподвижной системе координат. 1 ил.

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из естественной координатной системы в прямоугольную стационарную систему координат. Запоминают полученные значения модуля вектора тока статора, напряжений в прямоугольной стационарной системе координат, частоты вращения вала электродвигателя и используют их для определения активного сопротивления и эквивалентной индуктивности обмотки статора, приведенных к статору активного сопротивления и эквивалентной индуктивности обмотки ротора, и индуктивности, обусловленной магнитным потоком в воздушном зазоре электродвигателя, путем глобальной оптимизации функции. Затем определяют приведенный к валу электродвигателя суммарный момент инерции и момент сопротивления нагрузки путем глобальной оптимизации функции. Технический результат заключается в упрощении способа. 1 табл., 2 ил.

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного электродвигателя в безаварийном состоянии. Для этого, используя мгновенные значения фазных статорных токов асинхронного электродвигателя в установившемся режиме работы в течение заданного интервала времени и с заданной периодичностью, определяют результирующий модуль вектора тока. Его раскладывают на высокочастотные и низкочастотные вейвлет-коэффициенты. Используя высокочастотные вейвлет-коэффициенты определяют интегральную оценку, на основе которой формируют допустимую зону работы в виде порогового значения. После этого снова регистрируют мгновенные значения фазных статорных токов асинхронного электродвигателя в установившемся режиме работы, определяют результирующий модуль тока. Его раскладывают на высокочастотные и низкочастотные вейвлет-коэффициенты. Используя высокочастотные вейвлет-коэффициенты определяют интегральную оценку. По отклонению интегральной оценки от допустимой зоны работы асинхронного двигателя судят о состоянии асинхронного электродвигателя. Если полученная интегральная оценка не входит в допустимую зону порогового значения, то делают вывод о неисправности асинхронного электродвигателя. Технический результат заключается в упрощении способа диагностики электрических машин. 10 ил.

Изобретение относится к области электротехники

Изобретение относится к электротехнике

Изобретение относится к области электротехники и может быть использовано для цифрового управления асинхронным двигателем

Изобретение относится к электротехнике и может быть использовано для управления асинхронными двигателями

 


Наверх