Патенты автора Мартынов Пётр Никифорович (RU)

Изобретение относится к фильтровальной технике и может быть использовано для очистки различных жидких сред от механических примесей, в том числе скважинных растворов. Устройство для очистки жидких сред от механических примесей содержит корпус с днищем и крышкой, входной патрубок, введенный через крышку в верхнюю часть корпуса, сбросной патрубок, установленный в днище устройства, выходной патрубок, фильтроэлемент и дефлектор. Фильтроэлемент представляет собой полое объемное тело со сквозными отверстиями. Дефлектор выполнен в виде конуса с диаметром основания меньшим, чем диаметр фильтроэлемента. Дефлектор установлен на верхней поверхности фильтроэлемента таким образом, что вершина конуса совпадает с продольной осью входного патрубка, а верхняя часть дефлектора введена внутрь входного патрубка. Фильтроэлемент закреплен на вертикальной полой опорной стойке, входящей внутрь его объема, боковая поверхность опорной стойки выполнена перфорированной, нижняя часть опорной стойки соединена с выходным патрубком, причем данное соединение выполнено с возможностью регулируемого перемещения опорной стойки с фильтроэлементом вдоль продольной оси устройства. Техническим результатом является повышение производительности устройства и расширение его функциональных возможностей. 11 з.п. ф-лы, 2 ил.

Изобретение относится к химической промышленности и охране окружающей среды и может быть использовано при переработке и утилизации органического сырья и отходов. Оксид металла генерируют в блоке-разделителе 2 окислением расплава металла кислородсодержащим газом, подаваемым методом барботажа. За счет разности плотностей обеспечивают подачу полученного оксида металла из блока-разделителя 2 в блок-окислитель 3 и поступление расплава металла из блока-окислителя 3 в блок-разделитель 2. Термическую обработку органического сырья проводят в блоке-окислителе 3 при 400-1200°С. В качестве расплава металла используют свинец или свинцово-висмутовый сплав с содержанием свинца в расплаве не менее 40%. Твердое органическое сырье подают в блок-окислитель 3 под уровень оксида металла объемом не более 20% от объема расплава металла. Жидкое органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 0,5 мл/мин на 1 л расплава металла. Газообразное органическое сырье подают в блок-окислитель 3 под уровень оксида металла со скоростью не более 100 мл/мин на 1 л расплава металла. Полученный диоксид углерода с чистотой 99 об.% отводят через высокотемпературный газовый фильтр 1. Изобретение обеспечивает расширение функциональных возможностей за счёт использования различных газов, содержащих кислород. 4 з.п. ф-лы, 1 ил.

Использование: для контроля содержания кислорода в жидких металлах. Сущность изобретения заключается в том, что способ определения термодинамической активности кислорода в расплавленных металлах твердоэлектролитным датчиком с чувствительным элементом из кислородно-ионной проводящей керамики включает погружение в расплавленный металл твердоэлектролитного датчика, измерение электродвижущей силы чувствительного элемента твердоэлектролитного датчика и температуры расплавленного металла и определение по измеренным показаниям термодинамической активности кислорода в расплавленном металле, в анализируемый расплавленный металл дополнительно погружают не менее двух твердоэлектролитных датчиков с электродами сравнения, выполненными из материалов с различным содержанием кислорода, перед определением термодинамической активности кислорода измеряют разность потенциалов между электродами сравнения, по меньшей мере, одной пары твердоэлектролитных датчиков до выполнения условия ее постоянства в пределах абсолютной погрешности измерений и по одному из твердоэлектролитных датчиков в паре, для которой выполняется условие постоянства разности потенциалов между электродами сравнения, определяют термодинамическую активность кислорода по данному соотношению, причем измерение температуры расплавленного металла осуществляется одновременно и непрерывно с измерением электродвижущей силы чувствительного элемента твердоэлектролитного датчика. Технический результат: обеспечение возможности достоверной информации о термодинамической активности кислорода в расплавленном металле. 1 ил.

Изобретение относится к фильтровальной технике. Модуль сорбционной очистки содержит вертикальный корпус, состоящий из цилиндрической обечайки (17), днища (5) и крышки (11), верхний (1) и нижний (12) перфорированные насадки, поддерживающий слой (14), коллектор (10), фильтрующую загрузку. Загрузка состоит из трёх слоёв. Нижний фильтрующий слой (13) состоит из сорбента марки МС, нижняя поверхность которого контактирует с верхней поверхностью поддерживающего слоя (14). Промежуточный фильтрующий слой (15) состоит из сорбента марки МЖФ, а верхний фильтрующий слой (2) состоит из сорбента марки АС. Модуль содержит трубку (16), расположенную в полости корпуса, дренажный (6), входной (3) и выходной (4) патрубки, сообщенные с полостью коллектора (10), оснащенные затворами (7, 8, 9). Свободная поверхность верхнего фильтрующего слоя расположена с зазором относительно торцевой части верхнего перфорированного насадка. Технический результат заключается в расширении функциональных возможностей модуля очистки жидкой среды. 1 ил.

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод (2), нанесенный на внешнюю часть керамического чувствительного элемента (3). Измерительный электрод (2) представляет собой двухслойное токопроводящее покрытие, первый слой состоит из смеси порошка благородного металла и диоксида циркония, второй состоит из порошка благородного металла. Керамический чувствительный элемент (3) выполнен из твердого электролита в виде сопряженных между собой цилиндрического элемента и части сферы. Верхняя наружная цилиндрическая поверхность керамического чувствительного элемента (3) соединена с внутренней боковой поверхностью корпуса (4) посредством соединительного материала (7). Керамический чувствительный элемент (3) дополнительно снабжен пробкой (6) из оксида металла с отверстием, перекрывающей поперечное сечение полости керамического чувствительного элемента (3). Электрод сравнения (8) расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента (3) и поверхностью пробки (6), занимает ее часть и контактирует с внутренней частью сферы и, по меньшей мере, с частью внутренней цилиндрической поверхности керамического чувствительного элемента (3). Электрод сравнения (8) состоит из нижнего и, по меньшей мере, одного последующего слоя, обращенный в сторону части сферы свободный конец потенциалосъемного вывода (5) выведен в объем электрода сравнения (8) через отверстие в пробке (6), при этом обеспечен электрический контакт между потенциалосъемным выводом (5) и нижним слоем электрода сравнения (8). Обращенный в сторону части сферы свободный конец потенциалосъемного вывода (5) выведен в объем электрода сравнения (8) через отверстие в пробке (6). При этом обеспечен электрический контакт между потенциалосъемным выводом (5) и нижним слоем электрода сравнения (8). По меньшей мере, часть сферы керамического чувствительного элемента (3) выступает за пределы корпуса (4). Материалы корпуса (4), керамического чувствительного элемента (3) и соединительного материала (7) имеют близкий коэффициент температурного расширения. Свободная часть корпуса (4) соединена с гермовыводом полезного сигнала (1) с помощью сварки, полость, образованная керамическим чувствительным элементом (3), корпусом (4) и гермовыводом полезного сигнала (1), является герметичной по отношению к внешней среде. Изобретение обеспечивает возможность расширения области применения и уменьшения стоимости датчика. 8 з.п. ф-лы, 1 ил.

Изобретение предназначено для фильтрования. Модуль предварительной очистки жидкости включает вертикальный корпус, образованный боковой стенкой с крышкой и днищем корпуса, входной и выходной патрубки, укрепленные соответственно на крышке и днище корпуса, фильтроэлемент и дефлектор, установленный на продольной оси модуля и контактирующий с фильтроэлементом, разделительную вставку, сборную камеру с центральной трубой. Торцевая часть входного патрубка выведена в верхнюю часть полости корпуса без касания с фильтроэлементом. Разделительная вставка установлена с зазором в канале, образованном с одной стороны крышкой и боковой стенкой корпуса, а с другой стороны - фильтроэлементом и боковой стенкой сборной камеры. Технический результат: повышение эффективности очистки жидкости. 11 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике, транспорту, нефтехимической и другим отраслям промышленности. Мембранный фильтр содержит корпус (4), фильтроэлементы, установленные в его полости и смонтированные на трубной доске (15) посредством штуцеров (18), гидроаккумулятор (3), подводящий патрубок (11), боковой (1) и нижний (10) отводящие патрубки, распределительную решетку (14) с отверстиями, соединенные с патрубками (1, 10, 11) краны (5, 6, 7). Фильтроэлементы состоят из круглой цилиндрической пористой подложки (12) и наноструктурной мембраны (8), которые снизу и сверху ограничены нижним (9) и верхним (2) адаптерами. Один фильтроэлемент расположен в центре корпуса (4), а другие фильтроэлементы установлены в один ряд, и образуют гексагональную упаковку. Под трубной доской (15) укреплена направляющая пластина (19), имеющая отверстия для прохода штуцеров (18) и образующая с ней плоский щелевой канал. Наружная боковая поверхность штуцеров (18) установлена с касанием внутренней боковой поверхности отверстий направляющей пластины (19). Нижние концы фильтроэлементов введены в соответствующие им отверстия распределительной решетки (14) с образованием между ними кольцевых каналов. В полости корпуса(4) вдоль его внутренней боковой поверхности установлена разделительная обечайка (13) с образованием между ними кольцевого канала. Верхняя часть разделительной обечайки (13) соединена с периферийной частью направляющей пластины (19). В радиальном направлении исключен выход направляющей пластины (19) за пределы разделительной обечайки (13). Технический результат - повышение эффективности очистки жидкости. 5 ил.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой. Способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой включает проведения реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280-1000°С. В качестве бинарного расплава используется висмут с содержанием алюминия 0,05-7,00 мас.%. Изобретение позволяет улучшить технико-экономические показатели при производстве наноструктурного аэрогеля AlOOH. 1 ил., 1 табл.

Изобретение относится к энергетике, транспорту, нефтехимической и другим отраслям промышленности и касается мембранного устройства для очистки жидкости

 


Наверх