Патенты автора Рабаданов Муртазали Хулатаевич (RU)

Способ получения инфракрасного фоторезистора на основе кристалла CdSxSe1-x, отличающийся тем, что на кристалл CdSxSe1-x методом электролиза одновременно наносятся легирующие примесями Cu, Се и Sb, который затем подвергается термоотжигу при t=800±50°С, чем достигается более высокая вольт-ваттная чувствительность (порядка 105 В/Ват) к свету из ближней спектральной области инфракрасного излучения. Фоточувствительность полученного данным способом фоторезистора сохраняется до 140°С. Фоторезистор может быть использован в оптоэлектронных устройствах, таких как неохлаждаемый высокотемпературный приемник ближнего спектрального диапазона ИК излучения. 4 ил.

Изобретение относится к области электротехники, а именно к высокоэффективному способу изготовления наноструктурированных полупроводниковых материалов на основе фаз со структурой перовскита, содержащих катионы иттрия, бериллия, бария и меди с различной плотностью, необходимых для терморезисторов с отрицательным температурным коэффициентом сопротивления. Получение наноструктурированных терморезистивных материалов с заданной пористостью и электрическими свойствами при сравнительно низких температурах (менее 920°С) и времени менее 10 часов является техническим результатом изобретения, который достигается путем компактирования микропорошков и их обработки в течение часа при температуре 600-900°С при скорости подъема и охлаждения не выше ~5°С/мин и ~ 3°С/мин соответственно, при количественном соотношении нанопорошков от 40:60 до 60:40, полученных с технологическими замещениями бериллия на барий в соединении YВе2Сu3О7-δ, с последующим прессованием при давлении не менее 100 МПа и спеканием при температуре 900 до 920°С в течение 1÷10 часов. 3 пр., 6 ил.

Изобретение относится к способу изготовления тонкопленочных структур на основе соединений, содержащих катионы висмута и железа на поверхности наноразмерных трубок TiO2 и недодопированного YBa2Cu3O6+х (YBCO), обладающих чувствительными в зависимости от приложенного внешнего постоянного магнитного поля мемристивными свойствами, которые могут быть использованы при создании функциональных устройств электронной техники, в частности при изготовлении элементов с различными принципами записи, хранения и обработки информации, в том числе транзисторов, ячеек памяти нового поколения (сегнетоэлектрической и мемристивной) и резистивных гибридных структур, содержащих сверхпроводящие и сегнетоэлектрические слои. Сущность изобретения заключается в способе изготовления тонкопленочных структур мультиферроиков, а именно соединений со структурой перовскита, содержащих катионы висмута и железа, на поверхности наноразмерных трубок TiO2 и недодопированного YBa2Cu3O6+x (YBCO), обладающих мемристивными свойствами, чувствительными к внешнему постоянному магнитному полю, методом атомно-слоевого осаждения, заключающимся в послойном нанесении металлоорганических прекурсоров на основе висмута и железа, и последующей термообработкой в течение не более 1 ч при температурах менее 600°С. Технический результат заключается в получении пленок, обладающих мемристивными свойствами, чувствительными к приложенному внешнему постоянному магнитному полю, путем послойного нанесения металлоорганических прекурсоров на основе висмута и железа, и последующей термообработке в течение не более 1 ч и при температурах менее 600°С. 7 ил.

Изобретение относится к технологии получения пленок карбида кремния на кремниевой подложке. Изобретение заключается в двухэтапном процессе, где на первом этапе осуществляется процесс молекулярно-слоевого осаждения полимера из газовой фазы на кремниевой подложке. На втором этапе следует пиролиз полимера при температурах до 1300°С в вакууме (или инертной атмосфере), в результате которого образуется слой SiC. Высокие температуры обеспечивают карбонизацию полимера с образованием равномерно распределенного слоя углеродного остатка, который при более высоких температурах взаимодействует с кремниевой подложкой с образованием SiC. Молекулярно-слоевое осаждение дает прецизионный контроль толщины (до 0.1 нм) и конформности полимерной пленки, благодаря чему становится возможным контроль толщины пленки карбида кремния как продукта высокотемпературного пиролиза полимера на кремнии. 4 ил.

Изобретение может быть использовано в оптоэлектронных устройствах как неохлаждаемый высотемпературный приемник ближнего спектрального диапазона ИК-излучения. Инфракрасный резистор, выполненный на основании монокристалла CdS, отличается тем, что в нем использован монокристалл CdS, одновременно легированный примесями Cu, Се, и Sb методом электролиза из раствора хлоридов Cu, Се, и Sb в эталоне, с добавкой HCl, с последующим отжигом. Фоторезистор на основе монокристалла CdS, одновременно легированный примесями Cu, Се и Sb, обладает высокой фоточувствительностью, фоточувствительность сохраняется до 130°С вследствие применения многокомпонентной технологии легирования с поверхностных слоев методом термоотжига. 3 ил.

Изобретение относится к плазменной технике, и в частности к способам получения стабилизированной высокотемпературной плазмы, и может быть применено для построения импульсно–периодического термоядерного реактора, тепловых генераторов, а также источников импульсного нейтронного, рентгеновского и ультрафиолетового излучения. Технический результат - расширение арсенала способов и устройств для получения стабилизированной высокотемпературной плазмы. В способе получения стабилизированной высокотемпературной плазмы, в котором два металлических электрода располагают с зазором, где создают импульс продольного магнитного поля, а также в течение времени действия указанного импульса магнитного поля создают импульс продольного электрического поля, с помощью которого формируют в зазоре шнур ионизированной плазмы, причем ток в нем создает магнитное поле, обеспечивающее сжатие плазменного шнура за счет эффекта импульсного z-пинча. В устройстве для получения стабилизированной высокотемпературной плазмы, которое содержит импульсный источник энергии, формирователь импульса и плазменную камеру с осесимметричными электродами, причем электроды расположены с зазором на одной оси внутри плазменной камеры, а устройство также содержит соленоид и блок управления магнитным полем, выполненные с возможностью создания в зазоре импульса продольного магнитного поля, при этом импульсный источник энергии и формирователь импульса выполнены с возможностью создания в зазоре импульса продольного электрического поля, формирующего в зазоре шнур полностью ионизированной плазмы, величина тока в котором обеспечивает сжатие плазменного шнура за счет эффекта импульсного z-пинча, причем формирователь продольного импульса электрического поля синхронизован с блоком управления магнитным полем, с возможностью обеспечения формирования импульса продольного импульса электрического поля во время действия в зазоре импульса магнитного поля, сформированного с помощью соленоида и блока управления магнитным полем. 2 н. и 24 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к получению однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами. Способ включает смешивание нитратов висмута Bi(NO3)3, нитратов железа Fe(NO3)3, глицерина и воды с получением раствора, выпаривание полученного раствора с образованием геля и нагрев его до температуры вспышки с образованием порошка. Упомянутые нитраты висмута и нитраты железа используют в расчетном количестве, необходимом для получения феррита висмута, а глицин - в количестве на 35-50% меньше расчетного количества, при этом выпаривание полученного раствора и нагрев до температуры образуемого геля ведут при непрерывном перемешивании, а полученный после вспышки порошок нагревают до 350-400°C в течение времени до 30 мин. Обеспечивается получение чистого, однородного по дисперсности порошка. 8 ил., 4 пр.

Изобретение относится к технологии получения микрокристаллической целлюлозы, применяемой в качестве матрицы или наполнителя для получения нанокомпозитов, нанопорошков, мембран, катализаторов, синтетических полимеров, цеолитов, химических сорбентов, лекарственных препаратов, косметических кремов, эмульсий и красителей, широко используемых в нефтехимической, фармацевтической, пищевой и текстильной и в других отраслях промышленности. Способ получения микрокристаллической целлюлозы включает растворение 0,01-0,1 г/мл целлюлозы в 5,0-10,0 М водном растворе метансульфокислоты с последующей электрохимической очисткой при плотностях анодного тока 0,005-0,01 А/см2, фильтрованием, высушиванием и измельчением конечного продукта - микрокристаллической целлюлозы. Технический результат заключается в проведении процесса кислотного гидролиза целлюлозы в растворе метансульфокислоты с последующей электрохимической очисткой полученного материала, при этом используемые методы - экологически безопасны, а реактивы - биоразлагаемы; за счет использования метода электрохимической обработки растворенной целлюлозы сокращается число стадий требуемых для очистки микрокристаллической целлюлозы; для проведении процессов не требуется сложного технического оборудования. 5 ил., 4 пр.

Изобретение относится к способу получения сверхпроводящих керамических материалов различной плотности на основе сложного оксида YBa2Cu3O7-δ, содержащего преимущественно фазу из наноструктурированных порошков, оптимально насыщенную кислородом, для изготовления компонентов электронной техники и электроэнергетики. Технический результат изобретения - разработка простого и высокоэффективного способа получения высокотемпературной сверхпроводящей керамики различной плотности, содержащей преимущественно фазу YBa2Cu3O7-δ, оптимально насыщенную кислородом. Нитраты иттрия, бария и меди смешивают и растворяют в воде в соотношении материал:вода, равном 0,03:1, добавляют концентрированную азотную кислоту до полного растворения солей и глицерин в количестве 0,5-1,5% от общего количества водного раствора нитратов, выпаривают при непрерывном помешивании до образования густой жидкости, ее вспыхивания с образованием прекурсора в виде порошка, который, в свою очередь, нагревают до температур в интервале 350°С-915°С с выдержкой при этих температурах в течение 1-20 часов для формирования соответствующего распределения размера частиц, прессуют при 50-200 МПа и спекают при 920°С в течение 0,5-5 часов. 13 пр., 39 ил.

Изобретение относится к способу получения нанопорошков на основе феррита висмута для создания магнитоэлектрических материалов - мультиферроиков и компонентов электронной техники, которые могут найти широкое применение в микроэлектронике, в частности спиновой электронике (спинтронике); в сенсорной и СВЧ-технике; в устройствах для записи, считывания и хранения информации и др. Задача предлагаемого изобретения - получение чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией в один этап - для изготовления материалов и компонентов электронной техники. Техническим результатом изобретения является то, что он позволяет повысить эффективность и снизить энергозатраты при изготовлении чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией, путем нагревания, с различными скоростями, содержащего глицин раствора нитратов соответствующих металлов разной насыщенности. Преимуществами предложенного способа являются: получение непосредственно однофазного феррита висмута; чистота и однородность; низкие температуры синтеза; экспрессность за счет получения продукта за один этап синтеза. 8 ил.

Изобретение относится к технологии получения серосодержащих органических соединений, в частности к синтезу метансульфокислоты. Метансульфокислота используется в качестве катализатора реакций нитрования, ацилирования, этерификации и полимеризации олефинов. Она также используется в химической, электронной и радиотехнической отраслях промышленности. Способ получения метансульфокислоты осуществляют путем электролиза водного раствора диметилсульфона на фоне метансульфокислоты, электролиз проводят из концентрированных водных растворов 0,2-1,6 М диметилсульфона и осуществляют в анодном отделении диафрагменного электролизера, причем после завершения электролиза анолит подвергают нагреванию при температуре 70-80°C. Задачей данного изобретения является усовершенствование способа синтеза метансульфокислоты путем электролиза водных растворов диметилсульфона высоких концентраций. Технический результат заключается в проведении процесса электросинтеза метансульфокислоты из концентрированных растворов диметилсульфона. Предложенный метод имеет ряд преимуществ: производительность процесса увеличивается за счет повышения концентрации исходного вещества; получают метансульфокислоту высокой чистоты; в значительной степени ускоряется процесс получения метансульфокислоты; не требуется сложное оборудование; промежуточный продукт электролиза - диметилдисульфон - является нетоксичным и экологически безопасным веществом. 6 пр., 1 табл.
Изобретение относится к способу получения материалов на основе сложного оксида Y(BaxBe1-x) 2Cu3O7- с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения пленок методами нанесения покрытий и катодного распыления мишеней из этого материала; проводников тока второго поколения; терморезисторов

Изобретение относится к химической промышленности, а именно к области получения аммиачного водного раствора гироксидамина меди [Сu(NН3)4](ОН)2, используемого для растворения целлюлозы

 


Наверх