Патенты автора ПЭННЕЛЛ Ричард Б. (US)

Изобретение относится к газофазному способу полимеризации для получения полиолефинов. Описан способ, включающий взаимодействие мономеров, каталитической системы и инертного конденсирующегося реагента при условиях проведения полимеризации с получением полиолефина. Инертный конденсирующий реагент включает по меньшей мере 25 мол. % изобутана и по меньшей мере 25 мол. % пропана. Технический результат – увеличение производительности и снижение ΔТНП (температура начала плавления) при относительно низком давлении в реакторе. 18 з.п. ф-лы, 4 табл., 16 пр.

Изобретение относится к газофазному способу полимеризации для получения полиолефинов. Описан способ, включающий взаимодействие мономеров, каталитической системы и инертного конденсирующегося реагента, содержащего большую часть пропана, при газофазных условиях проведения полимеризации в режиме конденсации с получением полиолефина. Инертный конденсирующий реагент дополнительно содержит инертный конденсирующий реагент С4-С8. Отношение количества молей пропана к количеству молей инертного конденсирующего реагента С4-С8 больше или равно 65:35. Технический результат - повышение производительности при получении продуктов при поддержании непрерывной работы реакторной системы при проведении способа в непрерывном режиме, а также расширение диапазона сортов полимеров, обладающих разными характеристиками, при более высокой производительности. 13 з.п. ф-лы, 2 табл., 4 пр.

Предложены каталитические композиции для полимеризации и способы получения указанных композиций. Описана каталитическая композиция, содержащая по меньшей мере один катализатор полимеризации на подложке, причем указанная каталитическая композиция модифицирована по меньшей мере одним жирным амином, причем указанный жирный амин содержит менее 2% по массе мелкодисперсного неорганического материала, причем указанный по меньшей мере один жирный амин представлен формулой : (R1)xN(R2OH)y, где R1 представляет собой углеводородный радикал, содержащий от 8 до 40 атомов углерода; R2 представляет собой гидрокарбиленовый бирадикал, содержащий от 1 до 8 атомов углерода; и х принимает значение 1 или 2 и х+у=3; и причем указанный катализатор на подложке содержит одно или более металлоценовых соединений, выбранных из: (пентаметилциклопентадиенил)(пропилциклопентадиенил)МХ2, (тетраметилциклопентадиенил)(пропилциклопентадиенил)МХ2,(тетраметилциклопентадиенил)(бутилциклопентадиенил)МХ2, Me2Si(инденил)2МХ2,Me2Si(тетрагидроинденил)2МХ2, (н-пропилциклопентадиенил)2МХ2, (н-бутилциклопентадиенил)2МХ2, (1-метил-3-бутилциклопентадиенил)2МХ2, (пропилциклопентадиенил)(тетраметилциклопентадиенил)МХ2, (бутилциклопентадиенил)2МХ2, и (пропилциклопентадиенил)2МХ2, где М представляет собой Zr или Hf и X выбран из F, Cl, Br, I, Me, бензила, CH2SiMe3 и C1-С5 алкилов или алкенилов. Технический результат – создание каталитических композиций для полимеризации олефинов, способных к непрерывному действию в способе полимеризации при повышенной эксплуатации реактора, улучшенная производительность. 6 з.п.ф-лы, 3 табл.

Изобретение относится к композиции обеспечения непрерывности в производстве полиолефиновых олефинов. Описана композиция обеспечения непрерывности, включающая 2-20 мас.% по меньшей мере одной карбоксилатной соли металла, 2-20 мас.% по меньшей мере одного расплавленного жирного амина и по меньшей мере один жидкотекучий носитель, в расчете на суммарный вес компонентов. Карбоксилатная соль металла является модифицированной. Композиция дополнительно включает неорганический оксид. Композиция обеспечения непрерывности увеличивает производительность катализатора, а также показывает хорошие характеристики, связанные с обрастанием реактора. 9 з.п. ф-лы, 6 табл., 13 пр.

Изобретение относится к способу получения каталитической композиции и к способу полимеризации для получения этиленового полимера или сополимера, в котором используется каталитическая композиция, полученная предлагаемым способом. Способ получения каталитической композиции включает: смешивание при регулируемой температуре, составляющей 30°C до 90°C, карбоксилатной соли металла, содержащей свободные карбоновые кислоты, с первым органическим растворителем, имеющим диэлектрическую проницаемость при 25°C, большую чем или равную 3,0, где первый органический растворитель не содержит метанола, экстрагирование свободных карбоновых кислот из карбоксилатной соли металла, полученной на стадии смешивания, при регулируемой температуре, промывание карбоксилатной соли металла, полученной на стадии экстрагирования, при регулируемой температуре, вторым органическим растворителем, имеющим диэлектрическую проницаемость при 25°C, большую чем или равную 3,0, где второй органический растворитель не содержит метанола; высушивание карбоксилатной соли металла, полученной на стадии промывания, с получением высушенной карбоксилатной соли металла, где высушенная карбоксилатная соль металла является практически свободной от карбоновых кислот, как определено с помощью дифференциальной сканирующей калориметрии, так что высушенная карбоксилатная соль металла не демонстрирует каких-либо пиков плавления, которые расположены при температуре менее чем или равной 75°C, объединение высушенной карбоксилатной соли металла с катализатором, представляющим собой металлоценовое каталитическое соединение, содержащее атом титана, циркония или гафния, с получением каталитической композиции. Полученная каталитическая композиция обладает улучшенной текучестью и способна непрерывно действовать при полимеризации. 2 н. и 8 з.п. ф-лы, 4 ил., 1 табл., 17 пр.

Изобретение относится к получению этиленового полимера в полимеризационном реакторе с псевдоожиженным слоем. Способ образования частиц смолы включает: образование каталитического соединения, содержащего бис(н-пропилциклопентадиенил)гафний-(СН3)2, бис(н-пропилциклопентадиенил)гафний-F2, бис(н-пропил-циклопентадиенил)гафний-Cl2, или любые их комбинации; смешивание каталитического соединения с активатором, содержащим метилалюмоксан, с образованием каталитического комплекса; и комбинирование каталитического комплекса с носителем-диоксидом кремния с образованием катализатора полимеризации на носителе, где катализатор полимеризации на носителе имеет распределение частиц по размеру, в котором 10% частиц имеют размер менее 17-23 мкм, 50% частиц имеют размер менее 40-45 мкм и 90% частиц имеют размер менее 72-77 мкм; взаимодействие катализатора полимеризации на носителе с, по меньшей мере, этиленом в полимеризационном реакторе с газофазным псевдоожиженным слоем с образованием частиц смолы. Частицы смолы имеют: средний размер частиц полимера, по меньшей мере, 0,660 мм; распределение частиц по размеру с, по меньшей мере, 20% более 1 мм в диаметре; и отношение псевдоожиженной объемной плотности к осажденной объемной плотности (ПОП/ООП), по меньшей мере, 0,570, и среднее отношение псевдоожиженной объемной плотности к осажденной объемной плотности (ПОП/ООП) на 4% выше, чем среднее отношение ПОП/ООП для частиц смолы, полученных из каталитического соединения, нанесенного на другие носители на основе диоксида кремния, когда полимеризацию проводят в реакторе в по существу таких же условиях. Технический результат – более высокое отношение псевдоожиженной объемной плотности к осажденной объемной плотности при сохранении желаемой производительности катализатора. 7 з.п. ф-лы, 13 ил., 4 табл.

Изобретение относится к сополимеру этилена и альфа-олефина, полученному путем взаимодействия этилена, по меньшей мере, одного альфа-олефина и металлоценового катализатора, по меньшей мере, в одном газофазном реакторе

 


Наверх