Патенты автора Громов Валерий Игоревич (RU)

Изобретение относится к области металлургии, а именно к созданию цементуемой теплостойкой стали с улучшенными технологическими свойствами для производства тяжелонагруженных подшипников опор роторов газотурбинного двигателя большой тяги. Сталь содержит, мас.%: углерод 0,15-0,20, кремний 0,3-0,5, марганец 0,1-0,3, хром 4,5-5,2, никель 3,8-4,3, молибден 3,2-3,8, ванадий 0,8-1,2, кобальт 0,5-1,0, вольфрам 1,0-1,4, ниобий 0,1-0,3, железо и примеси - остальное. После окончательной термической и химико-термической обработки сталь имеет сочетание высокой твердости поверхности с вязкой сердцевиной. 2 табл.

Изобретение относится к области металлургии, а именно к созданию высокопрочной конструкционной стали, предназначенной для изготовления крупногабаритных высоконагруженных деталей, работающих при температурах до 400-450°С в различных областях машиностроения, например в авиа- и космической технике, для валов двигателя большой тяги. Сталь содержит, мас.%: углерод 0,25-0,32, хром 3,0-3,5, никель 12,0-13,0, молибден 1,3-1,5, кобальт 7,0-9,0, ванадий 0,1-0,2, ниобий не более 0,05, алюминий 1,4-2,5, бор не более 0,003, кальций не более 0,05, сера не более 0,01, фосфор не более 0,01, лантан не более 0,05, иттрий не более 0,05, церий не более 0,01, железо и примеси - остальное. Сталь обладает высокой прочностью, пластичностью и вязкостью разрушения. 2 н.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,30-0,35, азот 0,25-0,35, хром 13,50-15,50, никель 0,30-1,0, молибден 0,75-1,0, ванадий 0,2-0,3, кремний 0,5-1,0, марганец 0,2-0,5, лантан до 0,03, иттрий до 0,03, железо и примеси – остальное. Сталь обладает высокими эксплуатационными характеристиками, обеспечивающими значительное увеличение ресурса работоспособности подшипников качения. 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники. Сталь содержит, мас.%: углерод 0,16-0,19, хром 11,5-12,5, никель 3,5-4,0, молибден 2,3-2,5, кремний 1,5-2,0, кобальт 5,5-6,5, азот 0,07-0,10, марганец 0,2-0,4, иттрий 0,00001-0,05, церий 0,00001-0,05, лантан 0,00001-0,05, неодим 0,00001-0,05, железо – остальное. Сумма концентраций углерода и азота составляет 0,26-0,29 мас.%. Повышается ударная вязкость и сопротивление повторным нагрузкам, снижается скорость развития трещины усталости при сохранении высокого значения предела прочности. 2 табл.

Предлагаемое изобретение относится к области металлургии, в частности к способу комбинированной химико-термической обработки деталей из теплопрочной стали, предназначенных для изготовления высоконагруженных зубчатых колес редукторов авиационной техники, работоспособных при нагреве в зоне контакта до 500°С. Проводят предварительную термическую обработку путем нормализации при температуре (950±10)°C с охлаждением на воздухе, высокого отпуска при температуре (650±10)°C с выдержкой 3 часа, охлаждения на воздухе, закалки в масле при температуре (960±10)°С, повторного высокого отпуска при температуре (660±10)°C с выдержкой 3 часа и охлаждения на воздухе. Затем проводят вакуумную цементацию при температуре 940°С и упрочняющую термическую обработку путем закалки, промежуточных отпусков, обработки холодом и повторного отпуска. После упрочняющей термической обработки с поверхности цементованного слоя удаляют насыщенную карбидную зону методом шлифования на глубину 0,2-0,25 мм, после чего проводится газовое азотирование при (480-500)°С. Обеспечивается существенное повышение контактной долговечности (основная характеристика для тяжелонагруженных зубчатых колес), усталостной прочности и износостойкости. 1 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали, используемой для изготовления изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра, используемой в авиационной промышленности и машиностроении. Сталь содержит углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, празеодим, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,21, хром 15,0-16,5, никель 6,0-7,2, молибден 2,7-3,2, азот 0,04-0,09, марганец не более 1,0, кремний не более 0,6, иттрий не более 0,002, лантан не более 0,002, церий не более 0,002, празеодим не более 0,002, железо и неизбежные примеси - остальное. Повышается кратковременная прочность до значений не менее 2550 МПа и относительное удлинение до значений не менее 35%. 2 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для изготовления подшипников, работающих при температуре до 500°C и используемых в авиационных газотурбинных двигателях (ГТД) и редукторах вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам, ванадий, молибден, никель, ниобий и железо при следующем соотношении компонентов, мас.%: углерод 0,7-0,85, марганец 0,1-0,4, кремний 0,3-0,5, хром 4,5-5,5, вольфрам 1-1,5, ванадий 0,5-1,0, молибден 3-3,5, никель 0,15-0,4, ниобий 0,1-0,3, железо - остальное. Повышается технологичность при горячей пластической деформации, обеспечивается отсутствие дефектов при ковке и прокатке, а также высокая однородность структуры. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, а именно к созданию высокопрочных дисперсионно-твердеющих сталей для высоконагруженных зубчатых колес и подшипников, работающих при температуре до 500°C. Сталь содержит, мас.%: углерод 0,22-0,27, кремний 0,2-0,4, марганец 0,2-0,6, хром 3,3-4,0, кобальт 8,0-9,5, никель 6,0-6,9, молибден 2,5-3,0, вольфрам 0,4-0,6, ванадий 0,20-0,24, ниобий 0,05-0,15, иттрий 0,008-0,01, лантан 0,04-0,05, церий 0,02-0,03, неодим 0,015-0,02, азот 0,03-0,04, железо - остальное. Повышаются предел текучести, ударная вязкость и теплопрочность стали при пределе прочности σB не менее 1800 МПа. 2 табл.
Изобретение относится к машиностроению, в частности к способу комбинированной химико-термической обработки деталей машин. Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей включает циклическую цементацию деталей и закалку. Перед циклической цементацией проводят предварительные термообработку и механообработку, включающие нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Циклическую цементацию проводят с чередованием циклов насыщения и диффузионной выдержки, при этом осуществляют не менее 12 циклов продолжительностью не менее 30 минут. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После упомянутой цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480…500°С в течение не менее 10 часов при следующих параметрах: напряжение на катоде при катодном распылении - 900 В, в режиме насыщения - 400 В, плотность тока 0,20…0,23 мА/см2, состав газовой среды - азотоводородная смесь с 95% азота и 5% водорода, расход газовой смеси до 10 дм3/ч, давление в камере при катодном распылении - 13,3 гПа, при насыщении - 5…8 гПа. Обеспечивается повышение износостойкости приповерхностных слоев теплостойкой стали, формирующихся в результате цементации и азотирования, и увеличение долговечности узлов трения скольжения из материала с таким составом приповерхностного слоя. 1 пр.
Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов

 


Наверх