Патенты автора Тулин Дмитрий Владимирович (RU)

Изобретение относится к области космической техники, в частности к системам обеспечения теплового режима приборов космического аппарата (КА). Система обеспечения теплового режима приборов КА содержит термостабилизируемую панель с посадочными местами для установки приборов, снабженную радиационным теплообменником. При этом система снабжена тепловым аккумулятором, выполненным на базе фазопереходного материала. Приборы с постоянным характером тепловыделения установлены на платформе с наличием теплового контакта с платформой, а приборы с импульсным или циклическим характером тепловыделения установлены с отсутствием теплового контакта с платформой и подсоединены к тепловому аккумулятору посредством контурных тепловых труб (КнТТ). Испаритель КнТТ соединен с указанными приборами, а конденсатор встроен в тепловой аккумулятор. Достигается повышение надежности системы. 3 з.п. ф-лы, 7 ил.

Изобретение относится к области теплотехники, в частности к системам терморегулирования на базе двухфазного теплопередающего контура в виде замкнутой испарительно-конденсационной системы с капиллярным насосом, и может быть использовано в различных теплопередающих устройствах, применяемых в космической и других областях техники с целью охлаждения оборудования в условиях повышенных требований к расстоянию тепломассопереноса и величине передаваемой тепловой нагрузки. Система терморегулирования на базе двухфазного теплопередающего контура содержит испаритель с капиллярно-пористой насадкой и компенсационной полостью, контактирующий с термостатируемым оборудованием и приборами. Выход испарителя посредством паропровода подсоединен к входу конденсатора, контактирующего с радиатором-охладителем, а выход конденсатора посредством конденсатопровода соединен с входом испарителя. Система снабжена устройством для механической прокачки теплоносителя, выполненным в виде компрессора, установленного в паропроводе на выходе испарителя, причем управляющий вход компрессора подключен к блоку управления. Технический результат - повышение эффективности отвода тепла и увеличение допустимого расстояния тепломассопереноса. 7 з.п. ф-лы, 3 ил.

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас. %: цинк 5,8-11; магний 1,5-3,5; медь 0,1-3; марганец 0,1-0,5; по меньшей мере один элемент из группы: бериллий, лантан, 0,0001-0,2 каждого, по меньшей мере два элемента из группы: гафний 0,05-1,0, титан, цирконий, хром, 0,05-0,3 каждого, причем при содержании двух элементов выбор осуществляется из группы: титан, цирконий, гафний, необязательно церий, 0,0001-0,2, остальное - алюминий и неизбежные примеси в сумме не более 0,7. Изобретение направлено на повышение сопротивляемости сплавов ударному воздействию. 5 ил., 2 табл.

Изобретение относится к деформируемым свариваемым сплавам на основе алюминия, предназначенным для использования в качестве противометеоритной защиты критических элементов космических аппаратов. Сплав содержит, мас.%: цинк 2-8,5, магний 1,5-3,5, марганец 0,1-0,5, хром 0,05-0,3, цирконий 0,05-0,3, гафний 0,05-1,5, бериллий 0,0001-0,01, по меньшей мере один элемент из группы: медь, титан, никель, кобальт до 0,30 каждого, алюминий и неизбежные примеси в сумме не более 0,7 - остальное. За счет однородной мелкозернистой структуры обеспечивается высокая сопротивляемость ударному воздействию при повышении прочности, удовлетворительной пластичности и свариваемости. 2 з.п. ф-лы, 5 пр., 2 табл., 6 ил.

Изобретение касается обеспечения теплового режима бортового научного и служебного оборудования космических аппаратов: искусственных спутников, межпланетных станций и др. Система содержит не менее двух термостатируемых панелей (ТСП) с встроенными тепловыми трубами и не менее двух радиаторов. Каждая ТСП подключена к одному из радиаторов посредством регулируемых контурных тепловых труб (КТТ). Испарители этих КТТ установлены на ТСП, а конденсаторы встроены в радиаторы. Введен резервный радиатор, соединенный с ТСП дополнительными регулируемыми КТТ. Испарители и конденсаторы этих КТТ аналогично связаны с ТСП и резервным радиатором. В паропроводах дополнительных КТТ установлены управляемые клапаны для перекрытия либо открытия этих паропроводов. Техническим результатом изобретения является повышение надежности системы терморегулирования, снижение ее массы и габаритов. 3 з.п. ф-лы, 5 ил.

Теплопередающая панель космического аппарата относится к космической технике и может быть использована в системах терморегулирования космических аппаратов (КА) при обеспечении теплового режима оборудования, установленного на искусственных спутниках Земли, межпланетных станциях, спускаемых аппаратах и других космических объектах. Теплопередающая панель КА содержит металлическую обшивку и встроенные тепловые трубы. Панель выполнена секционной и состоит из жестко соединенных друг с другом отдельных пустотелых секций с тепловыми трубами. Каждая секция панели, включая тепловые трубы, выполнена в виде единой монолитной конструкции. Предлагаемая панель позволяет повысить эффективность теплового контакта между охлаждаемым оборудованием и встроенными тепловыми трубами, унифицировать составные элементы конструкции, повысить надежность и долговечность панели, снизить загрязнение собственной атмосферы КА за счет изъятия клея из применяемых материалов, а также существенно упростить технологию изготовления приборной панели, которая сочетает в себе тепловые и прочностные функции. 10 з. п. ф-лы, 7 ил.

Изобретение относится к области теплотехники, в частности к контурным тепловым трубам, и может быть использовано при создании регулируемых радиационных теплообменников космических аппаратов. В предлагаемом способе автоматического регулирования температуры тепловыделяющего оборудования КА посредством регулирования теплового потока в теплопроводе радиатора на базе контурной тепловой трубы, оснащенной микрохолодильником, причем рядом с радиатором устанавливают излучающую контрольную площадку, снабженную температурным датчиком, изолированную от радиатора в тепловом отношении и установленную в той же плоскости, а также имеющую такие же термооптические и удельные характеристики, что и радиатор. При выдаче команд на включение или выключение термоэлектрического микрохолодильника для запуска или останова циркуляции теплоносителя или увеличения термического сопротивления контурной тепловой трубы дополнительно анализируют температуру свободно излучающей контрольной площадки, по значению которой судят о наличии циркуляции теплоносителя в контурной тепловой трубе. Технический результат -повышение качества терморегулирования оборудования КА. 4 з.п. ф-лы, 3 ил.

Изобретение относится к космической технике, в частности к посадочным и перелетным межпланетным космическим аппаратам, и может быть использовано для обеспечения теплового режима электронного и другого оборудования, предназначенного для длительного, автономного функционирования на Луне, на Марсе, а также на Земле в суровых климатических условиях

Изобретение относится к области теплотехники и может быть использовано при создании регулируемых теплопередающих устройств и систем терморегулирования на их основе, в частности в космической технике, а также для обеспечения теплового режима оборудования, работающего в суровых климатических условиях

Изобретение относится к области теплотехники, в частности к контурным тепловым трубам, и может быть использовано в различных системах терморегулирования, в том числе в составе космических аппаратов для эффективного отведения тепловых потоков от твердых тепловыделяющих поверхностей, а также от жидких и газообразных сред

Изобретение относится к космической технике, а именно к экранам для защиты космического аппарата от высокоскоростного ударного воздействия метеороидов

 


Наверх