Патенты автора Ахмадиев Равиль Нурович (RU)

Изобретение относится к области машиностроения, в частности к вертикальным плунжерным насосам с самодействующими клапанами, особенно для перекачивания высоковязких жидкостей с содержанием механических примесей и газа, в частности к скважинным штанговым насосам, и может быть использовано в нефтедобывающей промышленности. Скважинный штанговый насос, установленный в скважине для подъема нефти содержит установленный в корпусе цилиндр с горловиной, седло всасывающего клапана, размещенное в корпусе клапана. Корпус клапана, выполненный в виде стакана, жестко соединен с корпусом. Седло выполнено, например, в виде шарика и зафиксировано неподвижно упором. Горловина цилиндра снабжена, например, съемным уплотнительным кольцом, которое выполняет функцию запорного органа всасывающего клапана. Цилиндр установлен с возможностью поочередного взаимодействия с седлом и упором корпуса, выполненным в виде цилиндрического уступа. В корпусе клапана выше седла выполнены сковозные радиальные отверстия. Внутри цилиндра размещен полый составной плунжер, снабженный снизу патрубком, диаметр которого равен диаметру плунжера. В патрубке выполнены сквозные радиальные отверстия. Между патрубком и плунжером размещено седло нагнетательного клапана. В патрубке ниже отверстий размещен диск с центральным и периферийными отверстиями. Насос снабжен штоком, на нижнюю часть которого между седлом и диском насажен запорный орган нагнетательного клапана с возможностью поочередного взаимодействия с седлом и диском. Запорный орган может быть выполнен в виде шарика с центральным отверстием. Диск насажен на нижнюю часть штока, выполненную ответно центральному отверстию диска. Корпус выше упора выполнен ступенчатым с коническим расширением с образованим конической посадочной поверхности. Корпус снабжен двухступенчатым затвором с центральным отверстием с конической опорной поверхностью, выполненной ответно конической посадочной поверхности корпуса. Затвор размещен с образованием щелевого уплотнения между нижней цилиндической ее частью и цилиндром. В нижней части затвор оснащен направляющей штока в виде диска с центральным отверстием, ответно выполненным штоку, и периферийными отверстиями. В верхней части шток снабжен упором, диаметр которого больше диаметра отверстия затвора. При этом расстояние между верхними торцами горловины и затвора (Н0) меньше максимального расстояния между нижними торцами диска и упора (Нш), т.е. Н0 < Нш. Цилиндр в нижней части снабжен пружиной, установленной между торцом корпуса клапана и упором цилиндра, выполненным, например, в виде разрезного пружинного кольца, размещенного в кольцевой канавке. Максимальное усилие пружины меньше веса цилиндра с горловиной. Уплотнительное кольцо горловины плунжера может быть установлено с натягом или зафиксировано, например, посредством кольца, зафиксированного, например, винтами. Запорные органы установлены с образованием рабочей и напорной полостей. Корпус насоса соединен с колонной насосно-компрессорных труб, а шток - с колонной штанг. Направляющая установлена в верхней части затвора и соединена с ним посредством резьбового соединения. При этом диаметр упора может быть выполнен меньше диаметра отверстия затвора. Конструкция скважинного штангового насоса обеспечивает надежную герметичную посадку затвора на корпус, тем самым обеспечивая надежную работу насоса в скважине. 2 з.п. ф-лы, 2 ил.

Заявлен способ регулирования режима работы скважины, оборудованной установкой электроцентробежного насоса, в системе межскважинной перекачки. Техническим результатом является повышение нефтеотдачи залежи при упрощении реализации способа регулирования режима работы скважины, снижение рисков отказа насоса, повышение коэффициента эксплуатации, расширение технологических возможностей способа регулирования режима работы скважины. Способ включает анализ условий разработки, закачку рабочего агента в нагнетательные скважины-акцепторы межскважинной перекачкой пластовой воды от скважины-донора, оборудованной электроцентробежным насосом с частотно-регулируемым приводом, отбор пластовой продукции из добывающих скважин, регулирование объема закачки. Дополнительно анализируют текущие и предшествующие за три года данные по дебитам добывающих скважин, объемам закачки пластовой воды в скважины-акцепторы, дебитам скважин-доноров с учетом гидродинамических характеристик системы межскважинной перекачки жидкости, определяют параметры оптимального рабочего диапазона напорно-расходной характеристики насосной установки и допустимый диапазон частоты вращения погружного электродвигателя, при которых обеспечивается стабильность показателей работы электроцентробежного насоса. Разрабатывают режим закачки с учетом суточного объема добычи по каждой скважине-донору и суточный объем закачки жидкости для каждой скважины-акцептора. Проверяют герметичность глубинно-насосного оборудования, на выкидную линию устья устанавливают датчик давления и подключают к контроллеру станции управления. В контроллер станции управления вводят алгоритм управления установкой электроцентробежного насоса по давлению на устье скважины, предельно допустимые номинальные значения по давлению на устье скважины, по которым в дальнейшем производится регулирование частоты питающего напряжения. Запускают со станции управления электроцентробежный насос на оптимальной производительности с частотой 50 Гц, эксплуатируют насос до достижения значения рабочего давления на устье, равного номинальному значению Рраб = Рном ± ∆, ∆ = 5%, при отклонении давления от рабочего давления в большую сторону Р > Рраб уменьшают частоту питающего напряжения на величину ∆, равную 5 Гц, продолжают эксплуатацию насоса до достижения номинального значения устьевого давления Рраб = Рном ± ∆, при отклонении давления от рабочего давления на устье в меньшую сторону Р < Рраб увеличивают частоту питающего напряжения на величину ∆, продолжают эксплуатацию насоса до достижения номинального значения устьевого давления Рраб = Рном ± ∆, причем при отклонении давления на устье скважины более или менее 5% от номинального давления циклы повторяют в зависимости от характера отклонения на величину ∆ в один шаг меньше до 4 Гц. 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при стравливании затрубного попутно-добываемого газа из нефтяной скважины. Технический результат - обеспечение возможности отвода газа из затрубного пространства нефтяной скважины при высоких температурах. Устройство включает двигатель и компрессор. Всасывающий патрубок компрессора соединен с затрубным пространством добывающей скважины. Выкидной патрубок соединен с отводящим трубопроводом. Компрессор выполнен в виде центробежного насоса. Его вал соединен с двигателем. Двигатель изготовлен в виде турбины. Ее лопатки насажены на вал. При этом вход турбины сообщен с парогенератором, а выход - с нагнетательной скважиной для закачки пара в пласт. При этом центробежный насос и турбина выполнены с возможностью работы при температурах более 75°С. 1 ил.

Изобретение относится к нефтяной промышленности, в частности к трубопроводному транспорту высоковязкого нефтяного сырья. Способ снижения вязкости нефтяного сырья в проточном режиме предусматривает комбинированную обработку сырья, включающую воздействие ультразвуковыми колебаниями с частотой излучения 22±10% кГц и мощностью 2-4 кВт и магнитное воздействие. В зависимости от характеристик сырья магнитное воздействие может создаваться как постоянными магнитами с индукцией 1,02 Тл, так и соленоидом, создающим электромагнитное поле с индукцией 0,1-0,3 Тл. Техническим результатом изобретения является повышение эффективности процесса перекачивания по трубопроводу высоковязкого нефтяного сырья за счет снижения его вязкости под действием комбинации волновых воздействий. 3 з.п. ф-лы, 1 табл.

Изобретение относится к нефтяной промышленности и может быть применено для стравливания попутно-добываемого газа в линию насосно-компрессорных труб добывающей скважины, эксплуатируемой механизированным способом. Способ стравливания попутно-добываемого газа, реализуемый с помощью установки разделения сред, содержащей пакер, проводящий канал, перфорированный патрубок, спускаемый на глубинно-насосном оборудовании, внутренний лифт входного устройства, переводник от внутреннего лифта к хвостовику, хвостовик из насосно-компрессорных труб, спускаемый ниже интервала перфорации на 20-60 м в зависимости от имеющегося зумпфа в скважине. При этом пластовая жидкость ниже интервала перфорации сообщается с затрубным пространством скважины и обеспечивает проведение гидродинамических исследований. Технический результат заключается в обеспечении возможности проведения гидродинамических исследований в скважинах с газовым фактором. 1 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для доставки геофизических приборов в горизонтальный ствол скважины с целью ее исследования. Устройство включает корпус с конусным наконечником и промывочными каналами, узел фиксации оптоволоконного кабеля и узел соединения с колонной технологических труб. Оптоволоконный кабель пропущен снаружи колонны труб и оснащен равномерно по длине горизонтального ствола датчиками для измерения необходимых параметров. Корпус снабжен снаружи по периметру жесткими центраторами. Колонна труб на конце оснащена полым ниппелем. Узел соединения изготовлен в корпусе со смещением относительно узла фиксации кабеля и выполнен с возможностью герметичного скользящего ограниченного упором соединения с ниппелем колонны труб. Промывочные гидромониторные каналы расположены в районе вершины конусного наконечника и сообщены с узлом соединения. Технический результат заключается в повышении эффективности устройства. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к механизмам для проведения спуско-подъемных операций в скважинах с наклонным устьем. Установка включает подвижное шасси с рамой, на которой установлена с возможностью подъема одним или несколькими гидродомкратами одного конца мачта, оснащенная поворотным рычагом и выполненная с возможностью направления труб в наклонное устье скважины, стойку мачты для механической фиксации мачты под углом, талевый механизм с кронблоком и блоком для подъема труб на мачту, лебедку тяговую для подъема труб по мачте из скважины, узел опорной балки винтового домкрата мачты, предназначенный для ориентации мачты относительно устья скважины, опорные аппарели установки у скважины под шасси и аутригеры, соединенные с рамой и выполненные с возможностью опоры на аппарели и подъема рамы с шасси с фиксацией в рабочем положении. При этом рама выполнена сборной, состоящей из неподвижной и подвижной частей относительно шасси. Причем подвижная часть рамы, на которой установлены основание мачты и гидродомкраты, установлена на неподвижную с возможностью ограниченного продольного перемещения при помощи домкратов, соединяющих части рамы. При этом неподвижная часть рамы соединена с задними и передними аутригерами через выдвижную балку с возможностью ограниченного поперечного перемещения при помощи боковых домкратов, соединяющих выдвижную балку и неподвижную часть рамы. Причем мачта для силового опускания колонны труб в скважину дополнительно оснащена одной или несколькими лебедками, нижняя опора которых размещена на неподвижной части рамы, а свободный конец оснащен механизмом захвата верхнего конца опускаемой в скважину колонны трубы. При этом каждый аутригер изготовлен из сочетания гидравлического и механического подъемника для фиксации неподвижной части рамы на необходимой высоте относительно опорных аппарелей. Технический результат заключается в повышении эффективности установки. 3 ил.

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к средствам эксплуатации скважин с горизонтальными стволами, в том числе с применением тепловых методов. Установка включает два хвостовика разной длины, сообщенные с входом насоса, причем один из хвостовиков оснащен боковым каналом с управляемым золотниковым клапаном, соединенным штоком с поршнем силового цилиндра, внутренняя полость которого сообщена трубкой с поверхностью для перемещения избыточным давлением поршня, сжатия возвратной пружины и перекрытия бокового канала с отсечением добываемого флюида из скважины. Для возврата в первоначальное состояние поршня вместо пружины может служить давление жидкости на выходе насоса, для этого другая полость цилиндра может быть снабжена другой трубкой, которая сообщена с выходом насоса. Хвостовики спущены в скважину параллельно, короткий из них оснащен управляемым клапаном, а длинный снабжен входом в удаленной зоне горизонтального ствола скважины. Длинный хвостовик может быть сообщен с входом насоса через переточный канал, соединенный с корпусом золотникового клапана с возможностью открытия при перекрытии бокового канала короткого хвостовика, внутрь скважины может быть спущен дополнительный хвостовик, сообщающий вход насоса со средней зоной горизонтального ствола. Поршень может быть подпружинен двумя пружинами, одна из которых выполнена предварительно сжатой примерно до середины рабочего хода поршня. Технический результат заключается в повышении эффективности добычи нефти одним насосом из разных интервалов горизонтального ствола скважины. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к подземному скважинному оборудованию и может быть применено для перепуска газа из межтрубного пространства скважины в колонну насосно-компрессорных труб. Клапан включает соединенную с обоих концов с насосно-компрессорными трубами муфту с боковым отверстием, куда встроен корпус клапана с перепускным отверстием. Корпус выполнен в виде ступенчатого цилиндра, и в нем последовательно соосно размещены гайка с центральным ступенчатым отверстием и острой торцевой кромкой, подпружиненный золотник с продольными каналами по периферии, уплотнительной прокладкой и запорным элементом в виде болта с коническим наконечником. Причем золотник с уплотнительной прокладкой имеет возможность взаимодействовать с торцевой кромкой гайки, а запорный элемент, одновременно удерживающий уплотнительную прокладку на золотнике, при запирании перепускного отверстия корпуса ограничивает ход золотника и дальнейшее сжатие пружины. При этом корпус с наружной стороны снабжен нижней и верхней вертикальными косынками. Золотник, пружина и запорный элемент клапана выполнены из нержавеющего материала, а уплотнительная прокладка изготовлена из полиуретана. Технический результат заключается в повышении эффективности работы устройства для перепуска газа. 1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной промышленности и может найти применение при очистке жидкости в стволе скважины от плавающего мусора и взвешенных частиц. Устройство включает щелевой патрубок, сетку, клапан, герметизатор межтрубного пространства скважины, муфту, корпус и цилиндрическое днище. Сетка размещена вокруг части щелевого патрубка со щелями. Щелевой патрубок и корпус закреплены нижними частями соответственно внутри и снаружи цилиндрического днища. Щелевой патрубок расположен внутри корпуса и соединен в верхней части выше щелей с корпусом подкосами. В качестве клапана использован клапан тарельчатого типа. Клапан и муфта размещены в верхней части щелевого патрубка. Герметизатор межтрубного пространства скважины размещен на наружной части цилиндрического днища. Отношение ширины щелей патрубка к ширине ячейки сетки составляет (3,5-5):(0,7-3,5). Повышается эффективность очистки скважинной жидкости. 1 ил.
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи месторождения. Способ разработки месторождения высоковязкой нефти включает закачку через нагнетательные скважины раствора поверхностно-активного вещества и теплоносителя и отбор пластовой продукции через добывающие скважины. Сначала на месторождении выделяют участок разработки с добывающими скважинами и 5 или 6 нагнетательными скважинами, на участке разработки проводят интенсификационные работы. Нагнетательные скважины эксплуатируют с коэффициентом эксплуатации не менее 80% ежемесячно и отклонением среднемесячной производительности не более 20% от среднего уровня в течение 12 месяцев до и после проведения интенсификационных работ. Добывающие скважины эксплуатируют с коэффициентом эксплуатации не ниже 80% ежемесячно в течение 6 месяцев до и 12 месяцев после проведения интенсификационных работ. При проведении интенсификационных работ поочередно в каждую нагнетательную скважину раствор температуростойкого поверхностно-активного вещества закачивают в концентрации от 0,1 до 1 мас.% в течение 4-6 суток в объеме, пропорциональном приемистости скважины, после чего в течение 24-26 суток закачивают в качестве теплоносителя сточную нагретую воду, при этом сначала закачивают раствор температуростойкого поверхностно-активного вещества в одну нагнетательную скважину, на следующие сутки после окончания закачки начинают закачивать раствор температуростойкого поверхностно-активного вещества в другую нагнетательную скважину и так последовательно во все нагнетательные скважины, а указанный теплоноситель закачивают в каждую нагнетательную скважину после окончания закачки в нее раствора температуростойкого поверхностно-активного вещества. 2 пр.
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой нефти. Технический результат - повышение дебита добывающих скважин без выхода из строя глубинно-насосного оборудования. Способ эксплуатации пары скважин, добывающих высоковязкую нефть, включает закачку пара через горизонтальную нагнетательную скважину, отбор пластовой продукции через горизонтальную добывающую скважину, расположенную ниже и параллельно нагнетательной скважине, причем в нагнетательную скважину спускают две колонны насосно-компрессорных труб разного диаметра, конец колонны большего диаметра размещают в начале горизонтального ствола, конец колонны меньшего диаметра размещают в конце горизонтального ствола, в добывающей скважине размещают оптоволоконный кабель и колонну насосно-компрессорных труб с электроцентробежным насосом и датчиками температуры на входе в электродвигатель электроцентробежного насоса и в электроцентробежном насосе. Через нагнетательную скважину закачивают пар, затем проводят термобарометрические измерения, посредством оптоволоконного кабеля выявляют зоны горизонтального ствола добывающей скважины с наибольшей температурой, среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в определенной зоне размещают электроцентробежный насос, изменением подачи пара через нагнетательную скважину и периодичностью работы электроцентробежного насоса устанавливают режим работы пары скважин, при котором электроцентробежный насос работает в постоянном режиме при температуре перекачиваемой пластовой продукции, равной максимально допустимой для электроцентробежного насоса. 1 пр.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке нефтяной эмульсии к горячему обезвоживанию. Отстойник для внутрипромысловой подготовки нефти к горячему обезвоживанию включает корпус, узел ввода нефтяной эмульсии, узел вывода нефти и узел вывода пластовой воды. Корпус выполнен цилиндрическим с боковыми сферическими стенками, узел ввода нефтяной эмульсии, узел вывода нефти, узел вывода пластовой воды выполнены в виде горизонтальной трубы, заглушенной с торцев, с вертикальными штуцерами, размещенными асимметрично относительно центра трубы и отстоящими от края трубы на 10-20% ее длины, образуя короткую и длинную стороны трубы, узел ввода нефтяной эмульсии расположен в нижней части корпуса, снабжен вертикальным подводящим патрубком, горизонтальной трубой, расположенной по оси корпуса, перфорированной снизу с боков отверстиями в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, узел вывода нефти расположен в верхней части корпуса, размещен в другой стороне корпуса, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода нефтяной эмульсии, расположенной по оси корпуса с перфорационными отверстиями сверху с боков в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, узел вывода пластовой воды расположен в нижней части корпуса под узлом вывода нефти, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода нефтяной эмульсии, расположенной по оси корпуса с перфорационными отверстиями снизу с боков в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса. Технический результат заключается в повышении эффективности подготовки нефти. 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке пластовой воды для системы поддержания пластового давления. Отстойник гидрофобный жидкофазный для внутрипромысловой подготовки пластовой воды включает корпус, узел ввода пластовой воды, узел вывода нефти, узел вывода очищенной пластовой воды и перегородку. Корпус выполнен цилиндрическим с боковыми сферическими стенками. Узел ввода пластовой воды, узел вывода нефти, узел вывода очищенной пластовой воды выполнены в виде горизонтальной трубы с вертикальными штуцерами, размещенными асимметрично относительно центра трубы и отстоящими от края трубы на 15-20% ее длины, образуя короткую и длинную стороны трубы. Узел ввода пластовой воды расположен в верхней части корпуса, снабжен вертикальным подводящим штуцером, горизонтальной трубой, расположенной по оси корпуса, перфорированной снизу и с боков отверстиями в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, и длинным - вблизи нижней части перегородки. Узел вывода нефти расположен в верхней части корпуса, размещен по другую сторону от перегородки, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода пластовой воды, расположенной по оси корпуса вблизи другой боковой стенки корпуса с перфорационными отверстиями в верхней части в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, и длинным - вблизи верхней части перегородки. Узел вывода очищенной пластовой воды расположен в нижней части корпуса под узлом вывода нефти, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода пластовой воды, расположенной по оси корпуса с перфорационными отверстиями в нижней части в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса. Перегородка выполнена перпендикулярной оси корпуса и перекрывающей третью часть от верха корпуса, снабжена отверстием в верхней части, расположенным на уровне трубы узла вывода нефти. Технический результат заключается в повышении эффективности очистки пластовой воды от нефти и механических примесей. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации скважины, добывающей вязкую нефтяную эмульсию. Технический результат - повышение эффективности добычи вязкой нефтяной эмульсии. По способу скважину оборудуют колонной насосно-компрессорных труб со штанговым глубинным насосом. Упомянутая колонна имеет также хвостовик с фильтром, нагревательный кабель на наружной поверхности от устья до штангового глубинного насоса, капиллярный скважинный трубопровод от устья до глубины ниже штангового глубинного насоса с входом во внутреннюю полость хвостовика. При эксплуатации скважины одновременно отбирают пластовую продукцию по колонне насосно-компрессорных труб посредством штангового глубинного насоса. По нагревательному кабелю пропускают электрический ток. По капиллярному скважинному трубопроводу прокачивают смесь растворителя асфальтеносмолопарафиновых отложений «Интат» и деэмульгатора «Рекод». Соотношение деэмульгатора и растворителя принимают (1:18)-(1:22). В качестве нагревательного кабеля используют кабель с максимальной температурой нагрева до 105°C и максимальной мощностью до 60 кВт·ч. 1 пр., 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации водозаборных скважин с содержанием попутной нефти в продукции, а также высокообводненных нефтяных скважин, используемых в качестве скважин-доноров - водозаборных. Технический результат - внутрискважинное разделение нефти от добываемой продукции скважины и раздельный подъем нефти и воды на поверхность при межскважинной перекачке воды для поддержания пластового давления. Установка включает устьевую арматуру, концентрично расположенные колонны насосно-компрессорных труб двух диаметров с электроцентробежным и струйным насосами в эксплуатационной колонне скважины. Имеется разделительная камера, расположенная в нижней части ствола скважины под электроцентробежным насосом, снабженным герметизирующим кожухом. Установка имеет канал для прохода отделившейся нефти, сообщающий затрубное пространство над насосом с разделительной камерой, и впускные отверстия для поступления разделенной воды. Герметизирующий кожух электроцентробежного насоса снизу в интервале разделительной камеры снабжен входным устройством в виде заглушенного снизу хвостовика. Хвостовик поделен на секции с впускными отверстиями. На уровне каждого впускного отверстия хвостовик снабжен стаканом, выполняющим функции гидрозатвора для нефтяных капель и впуска воды из разделительной камеры. Впускные отверстия расположены в один ряд вдоль хвостовика и выполнены с уменьшающимся диаметром в каждой последующей секции по направлению вверх. В качестве канала для прохождения нефтяных капель служит зазор между кожухом и эксплуатационной колонной скважины. Колонна насосно-компрессорных труб большего диаметра в устьевой арматуре соединена с водяной линией, а колонна насосно-компрессорных труб меньшего диаметра - с нефтяной линией. Нижняя часть колонны меньшего диаметра герметично установлена в верхней цилиндрической камере коммутатора, установленного в колонне насосно-компрессорных труб большего диаметра на глубине ниже динамического уровня жидкости в скважине. Коммутатор снабжен вертикальными периферийными каналами для прохождения через него восходящего потока воды и нижней цилиндрической камерой для размещения вставного струйного насоса, выход которого сообщен с верхней цилиндрической камерой. При этом обеспечена возможность поступления рабочей жидкости в струйный насос от электроцентробежного насоса, а откачиваемой жидкости - по боковому каналу коммутатора из затрубного пространства скважины через обратный клапан, расположенный с наружной стороны коммутатора. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение в системе поддержания пластового давления при межскважинной перекачке воды. Техническим результатом является упрощение конструкции и повышение надёжности внутрискважинного оборудования для разделения нефти от воды с обеспечением качественной очистки добываемой воды от нефти в скважине-доноре. Установка включает колонну насосно-компрессорных труб с электроцентробежным насосом и промывочно-обратным клапаном, спущенным в эксплуатационную колонну скважины, межтрубное пространство над насосом для накопления и резервирования отделившейся нефти, разделительную камеру, расположенную в нижней части ствола скважины под электроцентробежным насосом, проходной канал, сообщающий межтрубное пространство над насосом с разделительной камерой, впускные и выпускные отверстия для поступления воды. При этом электроцентробежный насос снабжен наружным герметизирующим кожухом, который выполнен с возможностью гидравлического сообщения приема электроцентробежного насоса с входным устройством, размещенным в разделительной камере, состоящим из заглушенного с нижнего конца хвостовика, поделенного на секции с впускными отверстиями. На уровне каждого впускного отверстия хвостовик снабжен стаканом, выполняющим функции впуска разделившийся воды во входное устройство и гидрозатвора для нефтяных капель. Причем впускные отверстия располагаются в один ряд вдоль хвостовика и выполнены с уменьшающимся диаметром в каждой последующей секции по направлению вверх. В качестве проходного канала для нефтяных капель служит зазор между кожухом и эксплуатационной колонной скважины. 2 ил.

Предлагаемое изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации водозаборных скважин с содержанием попутной нефти в продукции, а также высокообводненных нефтяных скважин, используемых в качестве скважин-доноров (водозаборных). Установка обеспечивает внутрискважинное разделение нефти от добываемой продукции скважины и раздельно подъем нефти и воды на поверхность при межскважинной перекачке воды с целью поддержания пластового давления. Сущность изобретения: в установке, включающей колонну насосно-компрессорных труб с электроцентробежным насосом, спущенную в эксплуатационную колонну скважины и в устьевой арматуре соединенную с водяной линией, разделительную камеру, расположенную в нижней части ствола скважины под электроцентробежным насосом, снабженным герметизирующим кожухом, канал для прохода отделившейся нефти, сообщающий затрубное пространство скважины с разделительной камерой, впускные отверстия для поступления разделенной воды, согласно изобретению герметизирующий кожух электроцентробежного насоса выполнен с возможностью гидравлически сообщить прием электроцентробежного насоса с входным устройством, размещенным в разделительной камере, состоящим из заглушенного с нижнего конца хвостовика, поделенного на секции с впускными отверстиями, при этом на уровне каждого впускного отверстия хвостовик снабжен стаканом, выполняющим функции впуска разделившийся воды во входное устройство и гидрозатвора для нефтяных капель, причем впускные отверстия располагаются в один ряд вдоль хвостовика и выполнены с уменьшающимся диаметром в каждой последующей секции по направлению вверх, а в качестве канала для прохождения нефтяных капель служит зазор между кожухом и эксплуатационной колонной скважины. Для подъема отсепарированной нефти из затрубного пространства на поверхность колонна насосно-компрессорных труб выполнена большего диаметра и в ней концентрично размещена колонна насосно-компрессорных труб меньшего диаметра, верхняя часть которой в устьевой арматуре жестко соединена с нефтяной линией, а нижняя часть герметично установлена в верхней цилиндрической камере коммутатора, установленного в колонне насосно-компрессорных труб большего диаметра на глубине ниже динамического уровня жидкости в скважине, при этом коммутатор снабжен вертикальными периферийными каналами для прохождения через него восходящего потока воды и нижней цилиндрической камерой для размещения вставного струйного насоса, состоящего из сопла, камеры смешения и диффузора, выход которого сообщен с верхней цилиндрической камерой, причем рабочая жидкость в струйный насос поступает от электроцентробежного насоса, а откачиваемая жидкость - по боковому каналу коммутатора из затрубного пространства скважины через обратный клапан, расположенный с наружной стороны коммутатора. Для герметизации вставного струйного насоса в нижней цилиндрической камере его корпус с наружной стороны снабжен уплотнительными манжетами и зафиксирован прижимным полым цилиндрическим винтом, при этом корпус струйного насоса под входом камеры смешения имеет радиальные отверстии, а с наружной стороны - круговую проточку. Установка обеспечивает реализацию разделения нефти от воды практически при любом количестве добываемой жидкости из водозаборных скважин за счет возможности использования входного устройства без ограничения его рациональной длины. Применение установки позволяет сохранить приемистость нагнетательных скважин за счет более качественной очистки закачиваемой воды от нефти и добыть дополнительный объем нефти из водозаборных скважин. Установка также позволяет экономически целесообразно использовать в качестве скважин-доноров (водозаборных) широкий набор высокообводненых нефтяных скважин по степени обводненности 95%-99% с учетом их территориально-рационального расположения в зоне нефтяных залежей, на которых требуется поддержание пластового давления путем межскважинной перекачки воды. 2 з.п. ф-лы, 3 ил

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи. Обеспечивает расширение области применения за счет использования в качестве водозаборных скважин как бывших добывающих, так и действующих обводненных добывающих скважин, и повышение эффективности за счет исключения остановок насосной установки для ее перевода в режим вытеснения нефти и на время проведения ремонтных работ на водопроводе. Сущность изобретения: способ включает установку пакера выше пласта добывающей скважины, отбор водонефтяной смеси из подпакерного пространства насосом, спускаемым на колонне труб, разделение ее на нефть и воду в скважинных условиях, отбор нефти из верхней части надпакерного межтрубного пространства в нефтепровод, отбор пластовой воды и ее закачку по водопроводу через нагнетательные скважины в нефтяной пласт с невыработанными запасами нефти. Обеспечивают работу насоса в постоянном режиме, подачу водонефтяной смеси осуществляют через радиальные отверстия в колонне труб в надпакерное межтрубное пространство, где производят разделение водонефтяной смеси. Воду отбирают из надпакерного межтрубного пространства по дополнительной трубе, вход которой размещают ниже уровня водонефтяного контакта, а выход сообщен с водопроводом, оснащенным расходомером. Отбор нефти дополнительно ведут из колонны труб в нефтепровод, который оснащен регулятором расхода и сообщен с дополнительной трубой байпасной линией, соединенной с нефтепроводом после регулятора расхода для сброса в него воды при ремонтных работах на водопроводе. 1 ил., 1 пр.

Изобретение относится к нефтяной промышленности и, в частности, к эксплуатации нефтедобывающей скважины с разделением пластовой продукции в скважине или эксплуатации водозаборной скважины, в добываемой пластовой жидкости которой имеется нефть

Изобретение относится к нефтяной промышленности и может найти применение при обнаружениях солеотложений в нефтепромысловом трубопроводе

Изобретение относится к нефтяной промышленности
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи при межскважинной перекачке рабочего агента
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважин, снабженных электроцентробежными насосами
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи

 


Наверх