Патенты автора Викулова Мария Александровна (RU)

Изобретение относится к способу химико-термической обработки и может быть использовано для повышения эксплуатационной стойкости изделий из углеродистых сталей. Способ борирования поверхности подложки из углеродистой стали включает нанесение борсодержащей обмазки на поверхность подложки из углеродистой стали и нагрев упомянутой подложки с обмазкой. Наносят борсодержащую обмазку, содержащую 50 мас. % аммонийной соли 2-моноэтаноламина и борной кислоты и 50 мас. % порошка сажи. Нагрев проводят при температуре 950-1325 °С с выдержкой 4,5-9,5 мин. Обеспечивается повышение качества покрытий путем формирования диффузионной зоны на границе раздела покрытие - подложка и повышение производительности процесса формирования покрытия. 3 ил., 4 табл., 13 пр.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к получению материалов для формирования функциональных покрытий, и может быть использовано при создании различных электронных приборов. В способе получения стабилизированной дисперсии субмикроразмерных порошков оксидных материалов, в котором порошок твердого раствора состава K1,46Ti8-хМхO16, где М – переходный металл, x = 0,3-0,7, имеет структуру голландита, в качестве дисперсионной среды используют низкокипящий одноатомный спирт, который на первом этапе «мокрого» помола берут в равных весовых долях с порошком твердого раствора по 10-20 весовых частей, а в качестве катионного поверхностно-активного вещества используют полидиметилдиалиламмония хлорид сахарозы. Изобретение позволяет получать дисперсию, обладающую высокой текучестью и высокой смачивающей способностью по отношению к токопроводящим оксидным покрытиям на основе оксида олова, а также стабильностью к расслаиванию. 1 табл.

Изобретение относится к области микроэлектроники и может быть использовано в системах, генерирующих или накапливающих электрическую энергию (конденсаторы, суперконденсаторы, источники тока). Техническим результатом изобретения является повышение удельной электрической ёмкости электрода, сохраняющейся при многократном зарядно-разрядном циклировании, и, как следствие, увеличение удельной энергии, запасаемой электродом при его включении в электрическую схему в составе накопителя электрической энергии. Мультиканальный электрод включает подложку из инертного диэлектрического материала, имеющую сотовую структуру, образованную трубчатыми микроканалами, субмикронное токопроводящее покрытие из инертного металла, например, серебра, нанесенное на поверхность подложки и поверхность стенок микроканалов, активный слой суперионного проводника в виде нано- и субмикроразмерных частиц, и токосъемник, нанесенный на подложку. Технический результат достигается за счет того, что активный слой суперионного проводника нанесен непосредственно на токопроводящее покрытие стенок микроканалов и содержит частицы твердого раствора состава KxMyTi(8-y)O16, имеющего структуру голландита, где М - по меньшей мере один переходный металл. 5 ил., 1 табл

Изобретение относится к области прикладной экологии, в частности к способу получения композиционного сорбента на основе полититаната калия и поливинилбутираля, предназначенного для очистки промышленных сточных вод от ионов тяжелых металлов. Предложен полимерный сорбционный композиционный материал для очистки сточных вод от ионов тяжелых металлов, состоящий из 50-70% мас. поливинилбутираля и 30-50% мас. полититаната калия, и способ получения полимерного сорбционного композиционного материала. Технический результат - получение сорбционного материала из малоопасных компонентов с меньшими трудозатратами. 2 н.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, обладающим высокой диэлектрической проницаемостью при сохранении высокой эластичности. Диэлектрический эластомерный композиционный материал содержит пластифицированный полимерный материал и материал наполнителя, диспергированный в полимерном материале, при этом в качестве полимерного материала содержит поливинилбутираль, а в качестве наполнителя содержит порошок диэлектрика, имеющий химический состав K1.46Ti8-xFexO16, х=0,3-0,9, и структуру голландита с объемной долей частиц наполнителя от 10 до 30% и размером частиц не более 3 мкм. Изобретение позволяет получать композитный диэлектрик, характеризующийся высокими значениями параметров диэлектрической проницаемости и эластичности при невысоком содержании функционального наполнителя. 3 н. и 9 з.п. ф-лы.

Изобретение относится к химической промышленности, в частности к утилизации отработанных гальванических растворов никелирования. Способ включает обработку электролита щелочным реагентом, при этом в качестве щелочного реагента используют титанат щелочного металла, имеющий слоистую структуру и вводимый в раствор постепенно при постоянном интенсивном перемешивании, затем отделяют осадок и сушат, а образовавшийся продукт нейтрализации в виде порошка используют в качестве катализатора окислительно-восстановительных процессов при комплексной очистке дымовых и выхлопных газов от оксидов азота и монооксида углерода. В других вариантах образовавшийся продукт нейтрализации в виде порошка используют в качестве фотокатализатора при очистке воды от загрязнений органическими соединениями или в качестве фотоактивного полупроводникового материала в системах фотовольтаики. Технический результат заключается в придании продукту утилизации высокотехнологичных функциональных свойств. 3 н. и 4 з.п. ф-лы, 5 табл., 4 пр., 1 ил.

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, и может быть использовано при создании различных электронных приборов и устройств, рабочие параметры которых определяются величиной диэлектрической проницаемости межэлектродного пространства емкостных элементов, в том числе при производстве микроконденсаторов и емкостных датчиков давления и перемещения. Повышение диэлектрической проницаемости материала при сохранении высокой текучести в широком температурном диапазоне является техническим результатом изобретения. Жидкий композитный диэлектрик включает органическую жидкость с гомогенно диспергированным в ней порошком сегнетоэлектрика в форме сложного оксида с размером частиц не более 400 нм, стабилизирующую добавку в виде поверхностно-активного вещества, предохраняющую от высаживания твердой фазы из жидкого диэлектрика, в количестве 1,0-1,5% от массы общего содержания порошка сложного оксида в смеси, и добавку металлорганического соединения, увеличивающую плотность органической жидкости, в количестве 2-5% от массы органической жидкости. При этом в качестве сложного оксида использовано соединение состава K1.46Ti8-хМeхO16, где Ме=Fe или Ni, x=0,3-0,7, а в качестве органической жидкости - жидкость с температурой замерзания не выше -40°С и температурой кипения не ниже +150°С, при общем содержании нанопорошка-сегнетоэлектрика от 35 до 45 весовых частей, а органической жидкости - от 55 до 65 весовых частей. Полученный жидкий композитный диэлектрик обладает высокой текучестью и стабильностью к расслаиванию, а также имеет диэлектрическую проницаемость на уровне не менее 105 при частоте 40 Гц. 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к химической промышленности, а именно к способам получения высокоэффективных катализаторов, способных очищать воду от загрязнения углеводородами, в частности основными красителями и катионными поверхностно-активными веществами как за счет фотокаталитической активности под действием солнечного излучения, так и в темноте

Изобретение относится к химической промышленности, а именно к способам получения высокоэффективных фотокатализаторов, активных в видимой области спектра солнечного излучения

 


Наверх