Патенты автора Фещенко Роман Юрьевич (RU)

Изобретение относится к металлургии, в частности к получению устойчивых к высокотемпературному окислению электродов из синтетического графита, применяемых в металлургических агрегатах. Способ включает получение на поверхности электродов защитного слоя с использованием пропиточной композиции, содержащей среднетемпературный пек, нагрев и изотермическую выдержку электродов. Вначале готовят пропиточную композицию путем нагревания среднетемпературного пека до температуры от 150 до 170°С и последующего добавления от 20 до 30 мас.% одного из тугоплавких оксидов или их смеси, в качестве которых используют диоксид титана, диоксид кремния и оксид хрома (III), далее графитированные электроды загружают в автоклав и без доступа воздуха заливают подготовленной пропиточной композицией, нагревают от 250 до 350°С при давлении от 5 до 6 атм и выдерживают в течение от 1,5 до 2,5 ч. После электроды охлаждают и подвергают термообработке путем нагрева со скоростью от 2 до 3°С/мин до температуры от 1200 до 1300°С и выдержки при конечной температуре в течение от 1,5 до 2,5 ч и охлаждают. Техническим результатом является увеличение стойкости графитированных электродов к высокотемпературному окислению. 1 табл., 36 пр.
Изобретение относится к электрометаллургии, в частности к получению устойчивых к высокотемпературному окислению электродов из синтетического графита, применяемых в электролизерах для получения магния и в других металлургических агрегатах. Технический результат - увеличение стойкости графитированных электродов к высокотемпературному окислению, увеличение срока службы графитированных электродов. В способе защиты металлургических графитированных электродов от высокотемпературного окисления сначала приготавливают пропиточную композицию, содержащую, мас.%: дигидрофосфат алюминия 7-10; дигидрофосфат цинка 25-30; ортофосфорную кислоту 12-16; смачивающий агент - изопропиловый спирт 2; воду остальное. Перед пропиткой графитированные электроды сначала очищают от механической пыли, а затем выдерживают под разрежением при давлении от 700 до 1000 Па в течение от 1 до 2 часов. Далее в пропиточную камеру заливают, не допуская попадания воздуха, предварительно подготовленную пропиточную композицию, которую нагревают до температуры от 40 до 45 °С и выдерживают в ней электроды из расчета от 2 до 2,5 часов на 50 мм поперечного сечения электрода от его края до центра. После электроды направляют на весовой контроль: если прибавка массы менее 7 %, то направляют на повторную пропитку, а если прибавка массы более 7 %, то направляют на сушку. Сушку производят в два этапа в сушильной печи: на первом этапе нагрев производят со скоростью от 2 до 3 °С/мин до температуры от 140 до 150 °С и выдерживают от 1 до 1,5 часов, на втором этапе - со скоростью от 10 до 15 °С/мин до температуры от 550 до 600 °С. Затем оставляют остывать, при этом происходит образование кристаллической пленки на доступной поверхности электрода. 1 табл., 45 пр.

Изобретение относится к области обогащения угля, в частности к получению высококачественного каменноугольного кокса и высококалорийного термообработанного твердого топлива для металлургии, энергетики и других отраслей промышленности. Перед термообработкой угля проводят экстремальное охлаждение угля до температуры от -10 до -12°С. Затем проводят нагрев угля в печи кипящего слоя в три этапа. На первом этапе нагрев осуществляется до температуры от 120 до 130°С, на втором этапе до температуры от 280 до 300°С, на третьем этапе до температуры от 500 до 550°С. Технический результат заключается в повышении выхода коксового остатка при снижении его зольности. 1 табл., 5 пр.

Изобретение относится к способу защиты углеграфитовой футеровки алюминиевого электролизера при производстве алюминия электролизом криолит-глиноземных расплавов, и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ включает формирование слоя электрического сопротивления на подине проекции анода, отдачу пускового сырья в пространство "борт-анод" и включение тока серии. Слой электрического сопротивления формируют из шихты, содержащей кокс, карбонат лития и кристаллический кремний, после формирования слоя проводят обжиг подины при температуре от 950 до 970°С. Обеспечивается снижение негативных эффектов, связанных с адсорбцией и проникновением натрия в углеграфитовую футеровку на стадии пуска электролизера, повышение стойкости и прочности углеграфитовой футеровки, увеличить срок службы и производительности электролизера, улучшение сортности получаемого алюминия и снижение расхода электроэнергии за счет уменьшения удельного электрического сопротивления углеграфитовой футеровки. 3 табл.

Изобретение относится к электролитическому способу получения алюминия. Технический результат - повышение точности измерений и оперативности определения концентрации глинозема. Устройство для определения концентрации глинозема в электролите алюминиевого электролизера содержит автономный источник напряжения переменного тока, регистратор напряжения постоянного тока с градуировкой, низкочастотный электрофильтр и графитовым датчиком. При этом автономный источник напряжения переменного тока выполнен с возможностью подачи напряжения переменного тока в цепь графитовый датчик - катодная шина. Выход низкочастотного электрофильтра подключен к регистратору напряжения постоянного тока, а вход соединен с автономным источником напряжения переменного тока. 1 ил.
Изобретение относится к холоднонабивной подовой массе для футеровки подины алюминиевого электролизера. Холоднонабивная подовая масса содержит электрокальцинированный антрацит, пластификатор и жидкое углеродное связующее, включающее каменноугольный пек, поглотительное масло и карбонат лития в качестве модифицирующей добавки. Обеспечивается повышение эксплуатационных свойств и стойкости катодного устройства, увеличение срока службы электролизера и его производительности и улучшение сортности получаемого алюминия при снижении удельного расхода электроэнергии за счет снижения электрического сопротивления в межблочном пространстве катодной футеровки. 2 з.п. ф-лы, 2 табл.

Изобретение относится к способу получения алюминия из металлургического глинозема. Способ включает плавление непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе под вакуумом, с последующим осаждением первичного алюминия и его рафинированием. Глинозем загружается в реактор дозатором в зону плазменной дуги и расплавляется при температуре 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па. Расплав электрокорунда переливается в электроосадительную камеру через разделительную диафрагму-перегородку, где под воздействием постоянного тока 150-200 А на поверхности расплава образуется алюминий, являющийся жидким катодом. Металл при достижении расчетного уровня 10-15 см направляют через сливное отверстие вакуумной печи в камеру для рафинирования, при этом в камере постоянно сохраняется необходимый объем металла. Обеспечивается упрощение способа получения алюминия и снижение материальных и энергетических затрат на его производство при высоких технико-экономических показателях процесса и экологичности. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу защиты углеродной футеровки алюминиевого электролизера при получении алюминия из металлургического глинозема в криолит-глиноземном расплаве и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ защиты углеродной футеровки алюминиевого электролизера включает нагрев до температуры 1300-1400°C с последующей выдержкой при максимальном значении температуры в течение 2-3 часов над предварительно прокаленным карбонатом лития, покрытым слоем кремниевой пыли. Пары лития, образовавшиеся при взаимодействии карбоната лития и кремниевой пыли, изменяют поверхностную структуру и основные свойства углеграфитовых блоков, за счет глубокого проникновения паров лития в поры угольного блока с последующей интеркаляцией слоев графита и обеспечивают формирование защитного антидиффузионного слоя толщиной 20-30 мм, блокирующего проникновение расплава в угольную подину электролизера и предотвращающего инфильтрацию жидкого алюминия и натрия в процессе работы электролизера. Обеспечивается снижение рабочего напряжения, повышение производительности, увеличение срока службы, повышение сортности алюминия, снижение расхода электроэнергии. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к цветной металлургии, в частности к способу контроля состава расплавленного электролита в алюминиевом электролизере

 


Наверх