Патенты принадлежащие Федеральное государственное бюджетное учреждение науки Институт кристаллографии им. А.В. Шубникова Российской академии наук, (ИК РАН) (RU)

Изобретение относится к фтор-проводящему твердому электролиту R1-yMyF3-y с тисонитовой структурой, содержащему фториды редкоземельного и щелочно-земельного металлов. Электролит характеризуется тем, что он имеет монокристаллическую форму и содержит трифторид RF3(R=La, Се, Pr, Nd) и дифторид MF2(М=Са, Sr, Ва), которые взяты при следующем соотношении: RF3 95-97 мол.

Изобретение относится к области кристаллографии. Способ включает приготовление маточного раствора с последующим его охлаждением в кристаллизаторе, внутри которого на платформе помещен затравочный кристалл, при этом предварительно готовят отдельно растворы сульфата кобальта, сульфата никеля и сульфата калия путем их растворения в горячей тридистиллированной воде, затем эти растворы смешивают, обеспечивая соотношение сульфата калия кобальта K2Co(SO4)2·6H2O и сульфата калия никеля K2Ni(SO4)2·6H2O - KCSH/KNSH в получаемом маточном растворе в диапазоне от 1:4 до 4:1, часть раствора отбирают для получения в чашке Петри затравочного и пробного кристаллов, уточняют температуру насыщения полученного маточного раствора по изменению размера пробного кристалла и затем фильтруют маточный раствор, платформу с полученным затравочным кристаллом устанавливают внутри кристаллизатора и нагревают до температуры, превышающей температуру насыщения на 10-15°C, подогревают отфильтрованный маточный раствор до температуры, превышающей температуру насыщения на 10-15°C, заливают этот маточный раствор в кристаллизатор, внутри которого находится затравочный кристалл, и ведут охлаждение маточного раствора, находящегося внутри кристаллизатора, до температуры, меньшей температуры насыщения на 0,05-0,1°C, после чего термостатируют раствор в течение 20-28 часов, а затем охлаждают со скоростью 0,05-0,5°C/сутки до комнатной температуры, или после достижения маточным раствором температуры, меньшей, чем температура насыщения на 0,05-0,1°C, включают в реверсивном режиме мешалку и охлаждают раствор до комнатной температуры, по достижении раствором комнатной температуры раствор сливают и извлекают из кристаллизатора полученный кристалл.

Изобретение относится к технологии выращивания кристаллов, предназначенных для использования в оптико-электронных устройствах. Способ выращивания кристаллов из пересыщенного раствора включает испарение растворителя с поверхности пересыщенного раствора, находящегося внутри кристаллизационного сосуда, конденсацию паров растворителя в верхней части сосуда, перетекание образовавшегося конденсата в нижнюю зону сосуда, при этом конденсат растворителя, собранный в верхней части кристаллизационного сосуда, основным насосом подают в расположенный вне сосуда контейнер, заполненный кристаллическим материалом, что обеспечивает постепенное контролируемое растворение материала, образовавшийся раствор из контейнера подают в зону кристаллизационного сосуда, заполненную пересыщенным раствором, часть раствора дополнительным насосом из верхней части контейнера по байпасной линии вновь направляют в нижнюю часть контейнера, в процессе выращивания кристалла обеспечивают контроль за изменением массы кристаллического вещества, которое находится внутри контейнера, причем по мере израсходования кристаллического вещества в контейнере в результате его растворения производят повторную загрузку контейнера кристаллическим материалом, не прерывая процесс выращивания кристалла.

Изобретение относится к электронной технике, а именно к электрооптическим устройствам на основе жидких кристаллов для управления поляризационными свойствами и интенсивностью светового потока, а также для отображения и обработки информации.

Изобретение относится к устройствам для кристаллизации белковых макромолекул в наземных условиях и условиях микрогравитации (в космосе). Микрофлюидное устройство содержит емкости с растворами различных белков 7, 9, 11 и осадителей 8, 10, 12, попарно подключенные через отдельные каналы 2, 3, 4, в которых установлены микрозатворы 13, к кристаллизационным камерам, при этом каналы 2, 3, 4 подключены к одному трубчатому элементу 1, внутри которого формируют отдельные кристаллизационные камеры 20-28 для каждого из белков, один конец трубчатого элемента 1 соединен через микрозатвор 16 с микронасосом 15, подающим из резервуара 14 в полость трубчатого элемента 1 рабочую среду 19, служащую для разделения полостей кристаллизационных камер 20-28, а другой конец трубчатого элемента 1 соединен со сборником 17 рабочей среды 19, причем для подачи растворов белков и осадителей через отдельные каналы 2, 3, 4 в кристаллизационные камеры 20-28 применяют отдельные микронасосы 5, 6, функционирующие по индивидуальным программам.
Наверх