Патенты принадлежащие федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) (RU)

Настоящее изобретение относится к ароматическим полиэфирам формулы: где n=1-20; m=1-30; z=1-30. Технический результат – расширение ассортимента ароматических полиэфиров, обладающих высокой тепло- и термостойкостью, повышенными значениями кислородного индекса, высокими механическими свойствами.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления конденсаторов с пониженными токами утечки. Сущность: способ изготовления полупроводникового прибора заключается в формировании двухслойного диэлектрика титаната бария BaTiO3 магнетронным ВЧ-распылением, при давлении кислорода 13,3⋅10-4 Па, ВЧ-мощности 5 Вт⋅см-2 и скорости осаждения 0,3 нм/с: нижний слой - поликристаллический толщиной 300 нм, при температуре подложки 600°С, верхний слой - аморфный толщиной 20 нм, при температуре подложки 450°С.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления кремниевого биполярного n-p-n-транзистора с пониженными токами утечки. Способ изготовления полупроводникового прибора путем ионного внедрения бора в нелегированный поликристаллический кремний с энергией (25-30) кэВ, дозой 4*1014-3*1015 см-2, с последующей термообработкой в атмосфере азота в два этапа: сначала при температуре 950°С в течение 50 мин, затем при температуре 1100°С в течение 120 мин, с последующим отжигом в течение 3 мин в атмосфере водорода при температуре 850°С.

Изобретение относится к области технологии изготовления полупроводниковой структуры, в частности к технологии изготовления эпитаксиальной пленки кремния с низкой дефектностью. Предложенный способ изготовления полупроводниковых структур путем формирования пленки кремния на кремниевой подложке со скоростью роста 20 нм/мин, при температуре 750°С, давлении 1,33⋅10-5 Па, при скорости подачи силана 14,3 см3/мин с последующей термообработкой при температуре 1100°С в течение 15 с в среде аргона позволяет повысить процент выхода годных структур и улучшит их надежность.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления переходов с пониженными токами утечки. Технология способа состоит в следующем: на пластинах кремния с ориентацией (100), по стандартной технологии выращивают слой термического окисла 200 нм, формируют контакты, а после отжига при температуре 300°С в течение 9 минут проводят имплантацию ионов Ga с энергией 15 кэВ, дозой 4*1013-3*1015 см-2, при токе 300 нА.

Изобретение относится к медицине, а именно к челюстно-лицевой и пластической хирургии. После обработки раневой поверхности намечают линии будущих разрезов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными значениями токов утечек. Предложенный способ изготовления полупроводникового прибора путем формирования слоя подзатворного окисла со скоростью осаждения 1,2 нм/с при температуре 900°С в смеси силана и двуокиси углерода в соотношении 1:100 в потоке водорода 24 л/мин, с последующей термообработкой при температуре 830°С в течение 5 мин в инертной среде, позволяет повысить процент выхода годных приборов и улучшить их надежность.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной плотностью дефектов. В способе изготовления полупроводникового прибора на GaAs подложке формируют слой нитрида алюминия AIN толщиной 55 нм, затем проводят имплантацию ионов кремния с энергией 60 кэВ, дозой (3-5)*1012 см-2.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с повышенным значением крутизны характеристики. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентацией (100) пленка титаната висмута наносится методом ВЧ распыления.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с высоким напряжением пробоя. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости формируют скрытый n+ слой по стандартной технологии, затем последовательно наращивают эпитаксиальный слой р-типа проводимости толщиной 3,5 мкм с концентрацией легирующей примеси бора 1,0*1015 см-3, который служит продолжением подложки, затем формируют эпитаксиальный слой n-- типа проводимости толщиной 7,1 мкм с концентрацией легирующей примеси фосфора 1,0*1015 см-3 и верхний эпитаксиальный слой n- типа проводимости толщиной 4,4 мкм с концентрацией легирующей примеси фосфора 2,3*1015 см-3.

Изобретение относится к термопластичной клеевой композиции с повышенной огнестойкостью и прочностью на сдвиг. Композиция включает полигидроксиэфир на основе 1,1-дихлор-2,2-(4,4'-диокси)фенилэтилена, растворитель - хлороформ, вторичный поливинилбутираль и стеклянный порошок из отработавшего срок эксплуатации автомобильного триплексного стекла при следующем соотношении компонентов, мас.%: поливинилбутираль вторичный 5-6; полигидроксиэфир 5-6; стеклянный порошок 5-30; хлороформ 58-85.

Группа изобретений относится к способу получения аппретированных углеродных волокон и к композиционным материалам на их основе, предназначенным в качестве конструкционных полимерных материалов в аддитивных технологиях.

Изобретение относится к способу получения капсулированных полигидроксиэфиров и сополигидроксиэфиров и может быть использовано при производстве полимерных материалов, применяемых в различных отраслях народного хозяйства в качестве конструкционных, пленочных и электроизоляционных материалов, клеев, мембран.

Изобретение относится к способу получения капсулированных полигидроксиэфиров и сополигидроксиэфиров и может быть использовано при производстве полимерных материалов, применяемых в различных отраслях народного хозяйства в качестве конструкционных, пленочных и электроизоляционных материалов, клеев, мембран.

Изобретение относится к композиционным материалам, предназначенным для аддитивных технологий производства изделий. Предложен полиэфиримидный композиционный материал, состоящий из, масс.

Группа изобретений относится к способу получения аппретированных стеклянных волокон и к композиционным материалам на их основе, предназначенных для производства изделий в аддитивной технологии. Способ получения аппретированных стеклянных волокон включает аппретирование стеклянного волокна путем нанесения аппретирующего материала из раствора с последующей сушкой.

Изобретение относится к ароматическим сополиэфирсульфонкетонам (СПЭСК), которые могут быть использованы в качестве термо-, и теплостойких конструкционных полимерных материалов, а также к способу получения ароматических сополиэфирсульфонкетонов.

Изобретение относится к углерод-полисульфоновым полимерным композитам, в частности к углепластикам на основе полисульфона, которые применяются в космической технике, авиа-, вертолето-, автомобилестроении, аддитивных технологиях.

Изобретение относится к капсулированным полигидроксиэфирам, используемым в качестве огнестойких пленочных материалов и защитных адгезивных покрытий, клеев, мембран с высокими эксплуатационными характеристиками.

Настоящее изобретение относится к хлорсодержащему диоксиэфиру формулы ,используемому в качестве мономера для получения поликонденсационных полимеров. 2 табл., 6 пр..

Изобретение относится к способу получения полиэфиримидного композиционного материала, предназначенного для получения изделий методом 3D-печати. Способ основан на предварительном получении двухкомпонентной полимерной матрицы с последующим введением наполнителя.

Изобретение относится к полигидроксиэфирам, используемым в качестве пленочных материалов и защитных адгезивных покрытий с высокими эксплуатационными характеристиками. Полигидроксиэфир представляет собой соединение формулы ,где m=50-140,на основе 3,3-ди(3,5-дибром-4-оксифенил)фталида (ТБФ) и 1-хлор-2,3-эпоксипропана (ЭХГ).

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов. Технология способа состоит в следующем: на сапфировой подложке формируют слой нитрида алюминия толщиной 30-50 нм методом реактивного ионно-плазменного распыления с использованием мишени из алюминия в плазме особо чистого азота без добавления аргона, при давлении (3-5)10-3 мм рт.ст.

Изобретение относится к композиционным материалам, предназначенным для аддитивных технологий производства изделий. Композиционный материал включает следующие компоненты при их соотношении, масс.

Изобретение относится к способу получения сополимеров полифениленсульфидсульфонов, применяемому для изготовления конструкционных изделий, предназначенных для использования в электронике, электротехнике, авиакосмической технике и др.

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим простым олигосульфонам, предназначенным для получения полиэфирсульфонов с высокими значениями приведенной вязкости и молекулярной массы, повышенными термо-, тепло-, огнестойкостью, хорошо растворимыми в хлорированных углеводородах, легко перерабатываемые методом полива из раствора.

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим простым олигосульфонам, предназначенным для получения полиэфирсульфонов с высокими значениями приведенной вязкости и молекулярной массы, обладающим повышенными термо-, тепло-, огнестойкостью, хорошо растворимым в хлорированных углеводородах и легко перерабатываемым методом полива из раствора.
Изобретение относится к получению высокоэффективного полифениленсульфида, используемого в качестве суперконструкционного полимерного материала. Способ получения полифениленсульфида заключается в том, что в реакционную среду вводят девятиводный сульфид натрия, пара-хлорбензол и проводят реакцию поликонденсации в высококипящем органическом растворителе в присутствии катализатора.
Изобретение относится к способу получения высокоэффективных полифениленсульфидов, используемых в качестве суперконструкционных полимерных материалов. Способ получения полифениленсульфидов заключается в том, что проводят поликонденсацию девятиводного сульфида натрия и пара-хлорбензола при температуре 225°С, 250°С и 275°C с продолжительностью по три часа под высоким давлением в присутствии катализатора и органического растворителя.

Изобретение относится к способу получению полиариленовой смолы, применяемой в качестве суперконструкционного полимерного материала. Способ получения полиариленовой смолы заключается в том, что проводят реакцию взаимодействия 0,4 моль 4,4'-дихлордифенилсульфона в качестве мономера I совместно со смесью 0,4 моль 4,4'-дигидроксидифенилпропана и 4,4'-дигидроксидифенила в качестве мономера II в присутствии растворителя, щелочного агента и катализатора.

Изобретение относится к ароматическим сополиэфирсульфонкетонам (АСПЭСК) нижеуказанных формул, которые могут быть использованы в качестве термо- и теплостойких конструкционных полимерных материалов, а также к способу получения ароматических сополиэфирсульфонкетонов.

Изобретение относится к высокомолекулярным соединениям, в частности к огнестойким сополиариленэфиркетонам (ОСПАЭК), которые могут найти применение как термо- и теплостойкие конструкционные полимерные материалы, а также к способу получения этих сополимеров.

Настоящее изобретение относится к ароматическим сополиэфирсульфонкетонам и способу их получения, используемых в качестве термо-, и теплостойких конструкционных полимерных материалов. Указанные сополиэфирсульфонкетоны имеют следующее строение: или где количество звеньев соответствуют m=1-9, n=9-1, с=1-9, d=9-1.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактно-барьерной металлизации прибора. Технология способа состоит в следующем: на кремниевую подложку р-типа проводимости, ориентации (100), удельным сопротивлением 10 Ом*см с изолирующим слоем оксида кремния толщиной 0,35 мкм формируют последовательным нанесением пленки Со толщиной 25 нм методом термического испарения в вакууме 2*10-3 Па со скоростью осаждения 1 нм/с с последующим двухступенчатым отжигом: в начале при температуре 450°С в течение 30 мин в среде водорода, с образованием CoSi2, затем при температуре 910°С в течение 10 мин в среде аргона Ar.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления гетероструктур с низкой плотностью дефектов. Предложенный способ формирования гетероструктуры InAs на подложках GaAs путем подачи триэтилиндия и арсина при температуре подложки 600°С со скоростью потока арсина 15 мл/мин, со скоростью потока водорода через барботер и триэтилиндия 2,5 л/мин при скорости роста пленки 1 нм/с с последующим отжигом в течение 60 с в потоке азота при температуре 700°С позволяет повысит процент выхода годных структур и улучшит их надежность..

Изобретение относится к огнестойким ароматическим полиэфирам, в частности к ненасыщенным галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности.

Изобретение относится к электролитическому способу получения ультрадисперсных порошков двойного борида церия и кобальта, включающему синтез двойного борида церия и кобальта из расплавленных сред. Способ характеризуется тем, что синтез проводят из галогенидного расплава на молибденовом катоде в атмосфере очищенного и осушенного аргона при температуре 700°C и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,2 до -2,4 В, где в качестве источника церия используют безводный хлорид церия, в качестве источника кобальта - безводный дихлорид кобальта, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия при следующем соотношении компонентов, моль/см3, × 10-4: хлорид церия 1,7÷3,0; хлорид кобальта 0,8÷7,0; фторборат калия 1,5÷3,5.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования силицидных слоев с низким сопротивлением. Изобретение обеспечивает снижение сопротивления, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного слоя оксида кремния с низкой плотностью дефектов. Слой затворного оксида кремния формируют с применением пиролиза силана в присутствии двуокиси углерода в соотношении (1:100) в потоке водорода 24 л/мин, со скоростью роста 3-5 нм/с, при температуре 1100°С, с последующим отжигом в течение 3 мин в потоке азота при температуре 570°С.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления п+ скрытых слоев. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентации (111) формировали п+ скрытый слой имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С, с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течение 20 мин в атмосфере водорода.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Целью изобретения является снижение контактного сопротивления, обеспечение технологичности, улучшение параметров работы приборов, повышение качества и увеличение процента выхода годных.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной дефектностью. Технология способа состоит в следующем: на пластинах кремния p-типа проводимости с удельным сопротивлением 7,5 Ом*см выращивают слой термического окисла 0,6 мкм, на котором с применением пиролиза низкого давления формируют пленку поликристаллического кремния (ПК) 0,3 мкм.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженными токами утечек. Предложен способ изготовления полупроводникового прибора путем формирования слоя подзатворного оксида при температуре 1200°С в течение 14 мин в потоке осушенного кислорода в присутствии трихлорэтилена с последующим отжигом в течение 10 мин в потоке азота, что позволяет повысить процент выхода годных приборов и улучшить их надежность.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления защитной изолирующей пленки с низкой дефектностью. Изобретение обеспечивает снижение значений тока утечки, повышение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Изобретение относится к области измерения температуры в зоне резания при использовании лезвийных и алмазно-абразивных инструментов. Заявлен способ определения контактной температуры при механической обработке материалов искусственной термопарой, заключающийся в непрерывной подаче инструмента навстречу термопаре с одновременным осциллографированием ее выходного напряжения и определением аппроксимирующей функции распределения температуры в обрабатываемом материале.

Изобретение относится к области создания композиционного материала предназначенных в качестве суперконструкционных материалов, используемых в 3D-печати методом послойного наплавления (FDM), то есть создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих контуры цифровой модели.
Наверх