Изготовление или обработка наноструктур (B82B3)

Отслеживание патентов класса B82B3
B82B3                 Изготовление или обработка наноструктур(1983)

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц fe3o4, закрепленных на одностенных углеродных нанотрубках, и способ его получения // 2635254
Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств.

Углеродный катодный материал для накопителя энергии и способ его получения // 2634779
Изобретение относится к электротехнике и может быть использовано при изготовлении углеродных катодных материалов для накопителей энергии, например гибридных суперконденсаторов.
Присадка для мазута // 2634730
Изобретение раскрывает присадку для мазута, которая выполнена в виде суспензии из наноструктурированного гидроксида магния в количестве (45-55%) и смеси дизельного топлива с минеральным маслом - остальное, в соотношении между ними (0,5-1,25).
Способ получения нанопрофилированной ультратонкой пленки al2o3 на поверхности пористого кремния // 2634326
Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников.
Способ получения углеродных нановолокон // 2634126
Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора.

Детонационный способ производства частиц углерода // 2634008
Изобретение относится к химической промышленности. Взрывчатое вещество со скоростью детонации 6300 м/с или более размещают на периферии исходного вещества, содержащего ароматическое соединение с не более чем двумя нитрогруппами, например, динитротолуола, динитробензола или динитроксилола.

Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью // 2633639
Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью.
Способ получения нанодисперсных оксидов металлов // 2633582
Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении.
Нанопинцет для манипулирования частицами // 2633425
Изобретение относится к нанотехнологиям для материалов и покрытий, к изготовлению или обработке наноструктур, а также к нанобиотехнологии.
Способ синтеза нанопроволок нитрида алюминия // 2633160
Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д.
Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия // 2633143
Изобретение относится к области гальванотехники и может быть использовано при изготовлении имплантатов. Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия, включающий обработку в ультразвуковой ванне последовательно в ацетоне и этаноле, промывку в дистиллированной воде, сушку на воздухе и анодирование в водном растворе 1М H2SO4+1% HF в гальваностатическом режиме при плотности тока 0.01 А/дм2 в течение одного часа.
Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода // 2632934
Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%.
Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом // 2632932
Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%.
Катализатор гидроизомеризации н-алканов и способ его приготовления // 2632911
Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности.
Катализатор гидроизомеризации н-алканов и способ его приготовления // 2632890
Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности.
Способ очистки алмазов динамического синтеза // 2632838
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.
Способ получения графена // 2632688
Изобретение может быть использовано в наноэлектронике. Частицы графита помещают в вакуум между электродами, при этом разность потенциалов устанавливают достаточной для электродинамического ожижения частиц и получения ими энергии, превышающей работу, необходимую для их раскола по плоскостям спайности на слои графена при хрупком разрушении во время ударов об электроды.
Нанокомпозитный материал с биологической активностью // 2632297
Изобретение относится к области нанотехнологии, а более конкретно, к нанокомпозитным материалам с пленочным углеродсодержащим покрытием, получаемым осаждением ионов из газовой фазы углеводородов посредством ионно-стимулированного осаждения.Нанокомпозитный материал с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана до формирования среднеквадратичной шероховатости Rq величиной 5-200 нм, при этом рельеф поверхности подложки модифицирован углеродсодержащей наноразмерной пленкой, полученной ионно-стимулированным осаждением в вакууме из циклогексана.Новым является то, что модифицирующая углеродсодержащая пленка, которая получена при осаждении из плазмообразующей смеси тетрафторметана и циклогексана, дополнительно содержит фтор в массовом соотношении к углероду в диапазоне 0,5-1,3, а рельеф наноструктурированной поверхности подложки образован выступами, отстоящими между собой на расстоянии 0,3-1,0 мкм, высота которых, как минимум, вдвое превышает радиус их основания, причем модифицирующая пленка содержит фтор и углерод в следующем их массовом соотношении 32-55% и 65-42% соответственно.Предложенное техническое решение полностью исключило адгезию микроорганизмов на поверхности наноструктурированного материала, супергидрофобность которого достигнута за счет оптимизированного содержания фтора и углерода на заданном нанорельефе поверхности подложки, при этом полученная оптическая прозрачность материала в видимом спектральном диапазоне обеспечила пригодность для использования в политронике..
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди // 2631883
Изобретение относится к области фармацевтики, а именно к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из амоксициллина, натриевой соли бензилпенициллина, ампициллина, заключающемуся в том, что в качестве оболочек нанокапсул используется конжаковая камедь, а в качестве ядра - препарат группы пенициллинов, при массовом соотношении ядро:оболочка 1:1, при этом указанный препарат группы пенициллинов добавляют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с, затем добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.
Способ получения игольчатых монокристаллов оксида молибдена vi моо3 // 2631822
Изобретение относится к технологии получения игольчатых монокристаллов оксида молибдена VI MoO3. Поверхность молибденовой ленты, надежно закрепленной своими концами и выгнутой кверху в виде арки, разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры 650-700°С в окислительной газовой среде, содержащей от 10 до 40% кислорода и инертный газ или смесь инертных газов при давлении, превышающем 100 Па, выдерживают при этой температуре в течение не менее 10 с с момента появления паров MoO3 белого цвета, затем нагрев прекращают и молибденовую ленту остужают до 25°С, после чего нагрев возобновляют при температуре 650-700°С до образования на торцах и поверхности молибденовой ленты из паров MoO3 тонких игольчатых монокристаллов оксида молибдена длиной до 5 мм.
Способ получения покрытий на основе нанопористого диоксида титана // 2631780
Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве комплексов промышленной экологии, а также в устройствах для выработки водорода.

Наночастицы, легче проникающие в слизистую оболочку или вызывающие меньше воспаления // 2631599
Группа изобретений относится к области медицины, а именно к наночастицам для введения одного или более терапевтических, профилактических и/или диагностических средств, которые получают эмульгированием раствора одного или более биосовместимых полимеров, формирующих ядро наночастиц, одного или более полиэтиленгликолей (ПЭГ), формирующих покрытие наночастиц, одного или более терапевтических, профилактических и/или диагностических средств и одного или более низкомолекулярных эмульгаторов в органическом растворителе при перемешивании в течение по меньшей мере трех часов для испарения органического растворителя и диффундирования и сбора цепей ПЭГ на поверхности наночастиц, при этом покрытие наночастиц характеризуется отношением [Г/Г*] больше 2, где Г – это поверхностная плотность ПЭГ, характеризующая число молекул ПЭГ на 100 нм2 поверхности наночастицы, а Г* – это полное покрытие поверхности наночастицы, характеризующее теоретическое число свободно расположенных молекул ПЭГ, необходимое для полного покрытия 100 нм2 поверхности наночастицы; а также к способу их получения и фармацевтической композиции, содержащей такие наночастицы.
Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава // 2631573
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей.
Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали // 2631572
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой.
Прозрачный субстрат, содержащий метамерный пигмент или метамерное сочетание пигментов, и многослойный пигмент на его основе // 2631297
Изобретение может быть использовано при получении декоративных и автомобильных лакокрасочных покрытий, антикоррозионных покрытий, при окраске пластиков, в полиграфии, в производстве красок для стекла и керамики и декоративной косметики.
Способ получения монокристаллов моноклинного диоксида гафния // 2631080
Изобретение относится к технологии получения монокристаллов диоксида гафния, которые могут быть использованы в качестве компонентов сцинтилляционных детекторов, лазеров, иммобилизаторов нуклеиновых кислот, биосенсоров, биодатчиков.
Устройство для выделения нуклеиновых кислот // 2630642
Изобретение относится к области биохимии. Предложено устройство для выделения нуклеиновых кислот.

Способ получения водно-солевых дисперсий фуллерена // 2630561
Изобретение относится к химической и фармацевтической промышленности и может быть использовано в медицине для лечения аллергии, астмы, дерматитов, ишемических болезней, радиационных поражений.
Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита // 2630342
Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей катализаторов, неподвижных хроматографических фаз, композиционных материалов и функциональных покрытий и др.
Способ получения вторичных аминов // 2629771
Изобретение относится к улучшенному способу получения вторичных аминов, в частности к способу получения вторичных насыщенных аминов, восстановительным аминированием нитрилов при нагревании.
Способ получения пленочного изображения на основе композиции для проводящих чернил, многослойное поликарбонатное изделие с таким изображением и способ его получения // 2629681
Настоящее изобретение относится к композиции для пленочного изображения и к способу получения пленочного изображения на основе композиции, включающей соединения метала.
Катализатор для селективного окисления сероводорода (варианты) // 2629193
Изобретение относится к катализаторам (вариантам) для селективного окисления сероводорода в элементарную серу, включающим соединения железа и кислородсодержащие соединения неметалла.
Электролитический способ получения наноразмерных порошков силицидов лантана // 2629184
Изобретение относится к электролитическому способу получения наноразмерных порошков силицидов лантана, включающему синтез силицидов редкоземельного элемента из расплавленных сред в атмосфере очищенного и осушенного аргона.
Способ получения частиц хлорида серебра // 2629080
Изобретение может быть использовано в неорганической химии, в производстве фотокатализаторов, полупроводников и сенсорных материалов.

Способ производства штапельного нанотонкого минерального волокна и оборудование для его изготовления // 2628856
Способ производства штапельного нанотонкого минерального волокна и оборудование для его изготовления. Изобретение относится к производству штапельного минерального волокна, в частности к конструкции соплового аппарата с валковым вытяжным механизмом и прижимной планкой, и может быть использовано на предприятиях, занимающихся получением штапельных минеральных волокон.

Электроизоляционный материал // 2628756
Изобретение относится к кабельной промышленности, в частности к технологии изолирования кабелей среднего напряжения на основе сшиваемого полиэтилена низкой плотности.
Способ получения кристаллических алмазных частиц // 2628617
Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок.

Способ получения наноразмерного высоколюминесцентного апатита с примесью европия (eu) // 2628610
Изобретение относится к материаловедению и может быть использовано для получения надежного люминесцентного маркера в медицине и биологии.

Способ повышения адгезионной прочности покрытия tin и (ti+v)n к подложке титанового сплава вт-6 // 2628594
Изобретение относится к способу нанесения защитного покрытия из слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6.
Способ получения нанокапсул l-аргинина // 2627819
Изобретение относится в области нанотехнологии, медицине, фармакологии и фармацевтики и раскрывает способ получения нанокапсул L-аргинина в каррагинане.
Способ получения углерод-фторуглеродного нанокомпозитного материала // 2627767
Изобретение относится к получению нанокомпозитных материалов. Предложен способ получения углерод-фторуглеродного нанокомпозитного материала, включающий термодеструкцию твердого политетрафторэтилена, которую осуществляют в плазменной среде, образующейся в результате предварительной деструкции аналогичного образца политетрафторэтилена в импульсном высоковольтном электрическом разряде в воздухе, при амплитуде импульсов 2-10 кВ с последующим сбором продуктов деструкции в виде сажеобразного продукта, содержащего отдельные наночастицы элементов, входящих в состав электродов.

Способ получения нанокапсул сухого экстракта шиповника в агар-агаре // 2627585
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта шиповника в агар-агаре.
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди // 2627580
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул антибиотиков тетрациклинового ряда.

Способ получения нанокапсул унаби // 2627579
Изобретение относится в области нанотехнологий и пищевой промышленности. Способ получения нанокапсул унаби характеризуется тем, что порошок унаби диспергируют в суспензию натрий карбоксиметилцеллюлозы в этиловом спирте в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают 10 мл хлористого метилена, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 1:5, или 5:1.
Способ получения нанокапсул солей металлов в каррагинане // 2627578
Изобретение относится к области нанотехнологии, ветеринарии и растениеводства и раскрывает способ получения нанокапсул солей металлов в каррагинане.
Способ получения нанокапсул солей металлов в альгинате натрия // 2627577
Изобретение относится к области нанотехнологии и ветеринарной медицине и раскрывает способ получения нанокапсул солей металлов в альгинате натрия.
Способ получения нанокристаллитов низкомолекулярного хитозана // 2627540
Изобретение относится к способам получения нанокристаллитов низкомолекулярного хитозана и может быть использовано в химическом производстве для создания нановолокнистых полимерных материалов, пленок, гранул, волокон, в качестве стабилизатора в пищевой промышленности, в косметологии и в сельском хозяйстве.

Новые материалы и способы для диспергирования наночастиц в матрицы с высокими квантовыми выходами и стабильностью // 2627378
Изобретение может быть использовано при изготовлении осветительных устройств. Сначала смешивают люминесцентные наночастицы, наружная поверхность которых покрыта двумя типами защитных молекул, с предшественником твердого полимера.

Способ получения нанокапсул резвератрола в каппа-каррагинане // 2626828
Изобретение относится к способу получения нанокапсул ресвератрола в каппа-каррагинане, характеризующемуся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - ресвератрол при массовом соотношении оболочка: ядро 3:1 и 1:5, при этом ресвератрол медленно добавляют в суспензию каппа-каррагинана в бутаноле в присутствии 0,01 г Е472 с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем добавляют бутилхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре.

Способ получения нанокапсул сухого экстракта топинамбура // 2626821
Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул сухого экстракта топинамбура характеризуется тем, что в качестве оболочки нанокапсул используется конжаковая камедь, в качестве ядра - сухой экстракт топинамбура, причем нанокапсулы получают путем перемешивания смеси конжаковой камеди в бутаноле с 0,01 г препарата Е472с в качестве поверхностно-активного вещества на магнитной мешалке, последующего добавления сухого экстракта топинамбура в смесь, осаждения 10 мл бутилхлоридом, затем полученную суспензию нанокапсул отфильтровывают, промывают бутилхлоридом и сушат, при этом соотношение ядро : оболочка составляет 1:3, 1:1 или 1:5 или 5:1.
 
2548458.
Наверх