Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов

Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора. Определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100 путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре. Перед определением фторхинолона в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов. Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия. Технический результат - упрощение процедуры формирования покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя. 6 пр.

 

Изобретение относится к области аналитической химии и может быть рекомендовано для селективного определения ципрофлоксацина в пищевых продуктах и биологических жидкостях с помощью пьезоэлектрического иммуносенсора.

В настоящее время для определения ципрофлоксацина применяют методы: хроматографические [Vella J. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma / J. Vella, F. Busuttil, N.S. Bartolo, C. Sammut, V. Ferrito, A. Serracino-Inglott, L.M. Azzopardi, G. LaFerla // Journal of Chromatography B. - 2015. - V. 989. - P. 80-85; Scherer R. Determination of Ciprofloxacin in Pharmaceutical Formulations Using HPLC Method with UV Detection / R. Scherer, J. Pereira, J. Firme, M. Lemos, M. Lemos // Indian Journal of Pharmaceutical Sciences. - 2014. - V. 76(6). - P. 541-544; Sirisha T. Simultaneous Determination of Ciprofloxacin and Tinidazole in Tablet Dosage Form by Reverse Phase High Performance Liquid Chromatography / T. Sirisha, B.M. Gurupadayya, S. Sridhar // Tropical Journal of Pharmaceutical Research. - 2014. - V. 13(6). - P. 981-987; Chen B. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples / B. Chen, J. Han, Y. Wang, C. Sheng, Y. Liu, G. Zhang, Y. Yan // Food Chemistry. - 2014. - V. 148. - P. 105-111], недостатками таких методов является достаточно длительная процедура пробоподготовки, необходимость дорогостоящего оборудования и присутствия высококвалифицированных специалистов; спектрофотометрические [Cazedey E.C.L. A First-Derivative Spectrophotometric Method for the Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution / E.C.L. Cazedey, R. Bonfilio, M.B. , H.R.N. Salgado // Physical Chemistry. - 2012. - V. 2(6). - P. 116-122; Dung N.T. Extractive spectrophotometric methods for determination of ciprofloxacin in pharmaceutical formulations using sulfonephthalein acid dyes / N.T. Dung, L.H. Bau, L.Q. Thao, N.Q. Dat. // Vietnam Journal of Chemistry, International Edition. - 2017. - V. 55(6). - P. 767-774], данные методы отличаются небольшим диапазоном определяемых концентраций (50-100 мкг/мл и 0,5-25 мкг/мл), а также низкой чувствительностью (>100 нг/мл).

Наиболее близким по технике выполнения, является метод [Garrido J.M.P.J. β-Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection / J.M.P.J. Garrido, M. Melle-Franco, K. , F. Borges, C.M.A. Brett, E.M.P.J. Garrido. // Journal Of Environmental Science And Health, Part A. - 2016. - V. 52(4). P. - 313-319], основанный на электрохимическом сенсоре, электрод которого модифицирован многостенными углеродными нанотрубками. Метод характеризуется стабильностью и экспрессностью, а также продолжительным сроком службы сенсора, однако чувствительность данного метода не высока, диапазон определяемых содержания составляет 3,3-26,5 мг/мл, а предел обнаружения равен 16,6 мкг/мл.

Задачами данного изобретения являются упрощение процедуры формирования рецепторного покрытия пьезоэлектрического сенсора, сокращение времени подготовки к анализу, продление срока службы пьезоэлектрического сенсора, проведение измерений с возможностью регенерации распознающего слоя.

Поставленные задачи решаются тем, что определение антибиотика проводится в конкурентном формате иммуноанализа с помощью пьезоэлектрического сенсора, рецепторное покрытие которого сформировано за счет применения магнитного углеродного нанокомпозита. Карбоксильные группы на поверхности магнитного углеродного нанокомпозита активировали смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, путем выдерживания в течение 20 мин. Затем производили иммобилизацию белкового конъюгата ципрофлоксацина на поверхности нанокомпозита, после чего осуществляли модификацию пьезоэлектрического сенсора. Для этого 2 мкл нанокомпозита наносили на поверхность кварцевого резонатора, закрепление материала происходило за счет внешнего магнитного поля, создаваемого неодимовым магнитом. Выдерживали сенсор с покрытием 90 минут при комнатной температуре.

Перед определением фторхинолона, в пробу вводили фиксированное количество антител, полученную смесь выдерживали 20 минут, после чего наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электродов.

Аналитический сигнал обратно пропорционален концентрации определяемого фторхинолона в анализируемой пробе, концентрацию определяли по градуировочному графику, регенерацию рецепторного покрытия осуществляли нанесением на поверхность 0,003 М раствора роданида калия.

Отличительными признаками предложенного способа являются:

• Высокая чувствительность способа, позволяющая осуществить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл, при этом предел обнаружения равен 2 нг/мл;

• Многократное (более 33 раз) использование иммуносенсора вследствие устойчивого покрытия, сформированного под действием внешнего магнитного поля, а также регенерации биорецепторного покрытия после каждого цикла измерения;

• Высокая селективность определения тетрациклинов в сложных по составу смесях (ПР%<4,50%);

• Относительно невысокая продолжительность анализа (15-20 мин).

Предложенный состав покрытия пьезоэлектрического сенсора позволяет проводить определение ципрофлоксацина в жидких средах в интервале концентраций 5-400 нг/мл. Высокая селективность обеспечивается использованием групп-специфичных иммунореагентов - поликлональных антител к ципрофлоксацину (ПР, % - 95,5-98,4). Легкость формирования распознающего слоя, и многократное (более 33 раз) использование иммуносенсора после регенерации биорецепторного покрытия обеспечивает снижение затрат на осуществление анализа.

Формирование рецепторного покрытия пьезоэлектрического сенсора осуществляли следующим образом:

В качестве физического преобразователя применяли пьезокварцевые резонаторы АТ-среза с собственной частотой колебаний 10±1 МГц с золотыми электродами диаметром 8 мм, полученными методом магнетронного напыления.

Предварительно активировали карбоксильные группы на поверхности магнитного углеродного нанокомпозита смесью, содержащей N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимид в 1%-ном водном растворе Triton Х-100.

Для иммобилизации белковых молекул конъюгата ципрофлоксацина на поверхности магнитного углеродного нанокомпозита к 10 мкл дисперсии композита в 1%-ном водном растворе Triton Х-100 добавляли 10 мкл активационной смеси и оставляли на 20 мин при комнатной температуре. Далее в систему вводили 10 мкл раствора с фиксированной концентрацией конъюгата ципрофлоксацина с бычьим сывороточным альбумином (0,25 мМ) и оставляли на 10-12 ч при температуре 4°С для формирования устойчивых связей.

Перед формированием рецепторного слоя поверхность электрода сенсора последовательно очищали 1 М раствором соляной кислоты, ацетоном и этанолом. Сенсор помещался в ячейку детектирования над неодимовым магнитом, наносили 2 мкл раствора магнитной углеродной композиции с белковым конъюгатом ципрофлоксацина, оставляли на 90 мин на воздухе при комнатной температуре, после чего промывали сенсор 200 мкл дистиллированной воды для удаления не связавшихся компонентов и высушивали в потоке теплого воздуха.

В пробу, объемом 5 мкл, содержащую фторхинолон, вводили фиксированное количество антител (5 мкл), соответствующее 50%-ному связыванию и выдерживали в течение 15 минут до завершения образования гомогенного иммунного комплекса определяемого соединения с антителами. Затем пробу наносили на сенсор с предварительно сформированным рецепторным покрытием на поверхности его электрода, выжидали 15 минут, после чего измеряли аналитический сигнал, вызванный образованием гетерогенного иммунного комплекса между несвязавшимися антителами и белковым конъюгатом ципрофлоксацина, иммобилизованном на поверхности электрода сенсора.

После измерения аналитического сигнала сенсора осуществляли разрушение образовавшегося иммунокомплекса и регенерацию биослоя. Частота колебаний сенсора при этом возвращается к исходному значению. После предварительной пробоподготовки, описанной выше, определяли концентрацию ципрофлоксацина в пробе по предварительно построенному градуировочному графику.

Для построения градуировочной зависимости использовали стандартные растворы фторхинолонов, содержащие 1, 2, 5, 10, 50, 100, 200, 300, 350, 400, 450 нг/мл ципрофлоксацина в количестве 5 мкл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживали 15 мин до завершения реакции.

Значение аналитического сигнала обратно пропорционально содержанию аналита в пробе.

Градуировочный график для определения ципрофлоксацина линеен в диапазоне концентраций 5-400 нг/мл: Δƒ=[2234±316]-[3.5±1.5]С, где Δƒ - аналитический сигнал, Гц; С - концентрация тетрациклина в пробе, нг/мл.

Примеры применения предлагаемого рецепторного покрытия пьезоэлектрического сенсора:

Пример 1. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 10 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=2200 Гц.

Пример 2. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 25 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=2148 Гц.

Пример 3. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 50 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=2062 Гц.

Пример 4. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 100 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=1889 Гц.

Пример 5. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 250 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=1370 Гц.

Пример 6. К пробе, объемом 5 мкл, содержащей ципрофлоксацин с концентрацией 300 нг/мл, добавляли 5 мкл раствора антител, соответствующего 50%-ному связыванию и выдерживают 15 мин до завершения реакции. Аналитический отклик сенсора обратно пропорционален содержанию фторхинолона в пробе.

Регенерацию биочувствительного покрытия пьезоэлектрического сенсора осуществляли нанесением на поверхность 0,003 М раствор роданида калия. Определение концентрации антибиотика осуществляли по градуировочному графику, построенному с применением стандартных образцов.

Аналитический сигнал составил Δf=1197 Гц.

Покрытие пьезоэлектрического сенсора на основе магнитных углеродных нанокомпозитов, отличающееся тем, что поверхность магнитного углеродного нанокомпозита, представляющего собой карбоксилированные углеродные нанотрубки с иммобилизованными на поверхности магнитными наночастицами, активируют смесью N-этил-N'-(3-диметиламинопропил)-карбодиимида гидрохлорид и N-гидроксисукцинимида в 1%-ном растворе Triton Х-100, иммобилизуют белковый конъюгат ципрофлоксацина, после чего полученную композицию фиксируют на поверхности пьезоэлектрического сенсора под действием внешнего магнитного поля, создаваемого неодимовым магнитом, далее проводят иммунохимическую реакцию.



 

Похожие патенты:

Изобретение относится к исполнительным устройствам на основе электроактивных полимеров. Технический результат заключается в уменьшении и/или устранении колебаний, генерируемых EAP во время фазы деактивации.

Изобретение используется для создания пьезоэлектрических преобразователей, работающих в высокочастотном диапазоне в интервале рабочих частот (4,0÷7,0) МГц. Заявляемый состав материала отвечает химической формуле: (1-х)Pb(Ti0,5Zr0,5)O3 – хCd0,5NbO3 (0,035≤х≤0,065) и содержит следующие компоненты, мас.%: PbO 64,19-66,28, ZrO2 17,72-18,30, TiO2 11,49-11,87, CdO 0,69-1,28, Nb2O5 2,86-5,32.

Изобретение относится к исполнительным устройствам на основе электроактивных полимеров. Технический результат заключается в обеспечении возможности компенсации смещения отклонения в реальном времени.

Способ изготовления композита титанат бария - феррит бария относится к производству сегнетомагнитных материалов или мультиферроиков. Для осуществления заявляемого способа производится раздельный размол титаната бария и феррита бария до дисперсности 10 мкм.

Изобретение может быть использовано в электронике для изготовления электронных компонентов. Способ изготовления контактов к тонким трехмерным чешуйкам слоистых кристаллов включает прижим контакта к кристаллу, для этого используют матрицу с предварительно сформированными на поверхности оксидированного кремния металлическими контактными дорожками - контактами, на которой размещают чешуйку слоистого кристалла толщиной от 100 нм до 1 мкм, так чтобы обеспечить ее перекрытие с контактными дорожками, а прижим контакта к кристаллу осуществляют путем однократного прижима второй полированной пластиной оксидированного кремния чешуйки кристалла.

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с заданной скоростью относительно источника 4 коронного разряда, размещенного на заданном расстоянии по меньшей мере над всей поверхностью по ширине перемещаемой пленки, и подвергают воздействию лазерного излучения 7 зону пленки 1 в процессе ее перемещения непосредственно перед источником 4 коронного разряда для кратковременного повышения подвижности молекулярных групп в макроцепочках полимерного материала.

Группа изобретений относится к исполнительному устройству, содержащему электроактивный материал. Электроактивное исполнительное устройство содержит исполнительный элемент, содержащий электроактивный материал, выполненный с возможностью деформироваться в ответ на приложение электрического стимула, частицы магнитно-мягкого материала, диспергированные в электроактивном материале, средство генерирования магнитного поля, выполненное с возможностью генерировать магнитное поле с регулируемой диаграммой направленности по напряжённости поля для приложения к исполнительному элементу, средство генерирования электрического стимула, контроллер, выполненный с возможностью управлять средством генерирования магнитного поля и средством генерирования электрического стимула в согласованном режиме для реализации посредством этого одного или более шаблонов деформации в исполнительном элементе.

Изобретение относится к медицинской технике. Устройство молокоотсоса для сцеживания грудного молока содержит блок (110) резервуара для приема сцеженного грудного молока и блок (120) насоса, содержащий корпус (130) насоса и насосное устройство (140) для приложения отрицательного давления к откачиваемому объему, задаваемому корпусом (130) насоса.

Изобретение относится к области актуаторов и датчиков. Техническим результатом является повышение точности управления.

Изобретение предназначено для создания устройств пьезотехники, работающих в высокочастотном диапазоне в интервале рабочих частот 4,0÷7,0 МГц. Пьезоэлектрический керамический материал содержит, мас.%: Na2O 7,05-7,99.

Изобретение относится к способу масштабирования синтеза оксида графена, включающему диспергирование графитового порошка в концентрированной серной кислоте. Далее добавление к полученной смеси перманганата калия, разбавление ее дистиллированной водой, фильтрацию осадка и промывку его до нейтрального значения рН с последующим высушиванием.
Наверх