Способ получения кристаллических цеолитных алюмосиликатов с молярным отношением sio2/al2o3 не менее 20

 

Изобретение относится к способам получения кристаллических цеолитных алюмосиликатов с молярным отношением SiO2/Al2O3 20 , применяемых в качестве адсорбентов и катализаторов. Сущность изобретения: проводят гидротермальную кристаллизацию реакционной смеси, которая в водно-щелочной среде содержит источники SiO2 и Al2O3 , минеральные вещества, кристаллические зародыши при следующих молярных соотношениях: SiO2/Al2O3 20-60; OH-/SiO2 0.10 - 0.20; H2S/SiO2 20 - 60. Гидротермальная кристаллизация осуществляется в две стадии: первая стадия охватывает температурный интервал 245 - 325°С в течение 1 - 20 мин, вторая стадия - температурный интервал 120 - 225°С в течение 1 - 100 ч.

Изобретение относится к способу получения кристаллических цеолитных алюмосиликатов с мольным отношением SiO2/Al2O3 2O путем гидротермальной кристаллизации из реакционной смеси, которая в водно-спиртовой среде содержит SiO2 и Al2O3, соответственно их гидратированные производные или силикаты и алюминаты щелочных металлов, минеральные вещества, кристаллические зародыши и в случае необходимости органические, структурирующие аммониевые соединения.

Известны параметры для синтеза Pentasil (пятикремниевых) цеолитов со следующими молярными соотношениями: OН-/SiO2 c 0,07-10 SiO2/Al2O3 c 5-100 H2O/SiO2 c 1-240 В этих широких пределах синтез до некоторой степени частофазного ZSM - 5 может удаваться только благодаря применению органических аминов, например, тетрапропиленаммониевых соединений со структурирующей функцией.

В известных патентах и публикациях имеют дело прежде всего с заменой очень дорогостоящих, токсических и легко воспламеняемых органических шаблонов, при термическом разложении которых существует также опасность разрушения цеолитовой структуры; необходимо обходиться совершенно полностью без шаблонных соединений при синтезе. Дальнейшие модификации направлены на улучшение реакционной способности SiO2 и Al2O3- исходные вещества.

Известен способ, в котором для ускорения гидротермальной кристаллизации используют специально подвергнутый старению, но еще рентгеноаморфный алюмосиликат в качестве геля образования центров кристаллизации.

Известны алюмосиликаты с цеолитной структурой и способ их получения, причем превращение осуществляется без добавки органического соединения, но в присутствии фосфата алюминия.

Однако в этом способе образуются феолиты, которые содержат фосфат.

Синтез цеолитов без использования органических соединений при нормальных условиях протекает очень медленно, так что вплоть до настоящего времени в промышленном масштабе нет способа получения с высоким содержанием кремниевой кислоты алюмосиликатов с Pentasil-cтруктурой (Sуnthesis of High-Silica аluminosilicat Zeolites, 1987, с. 143).

Известно, что образование алюмосиликатов, построение кристаллической решетки цеолитов из SiO-4- и AlO-4-тетраэдров, образование зародышей и рост кристаллов протекают через обратимые реакции. Эти процессы зависят от состояний химических равновесий, которые могут протекать кинетически в различных направлениях в зависимости от температуры, гидротермальных соотношений давления и концентраций, т.е. при пере- или недонасыщении. Желательна по возможности полная реакция до кристаллического алюмосиликата при избежании возможных побочных фаз (например, кристабалита) и аморфной фазы.

Высокие температуры, т.е. высокие скорости реакции, очень благоприятны для образования алюмосиликата, однако очень высока опасность образования смешанных (побочных) фаз.

Целью изобретения является разработка способа получения кристаллических цеолитных алюмосиликатов с мольным отношением SiO2/Al2O320 путем гидротермальной кристаллизации без применения органических соединений, который осуществляют в промышленном масштабе и благодаря которому получают продукт, лишенный кристаллических смешанных (побочных) фаз.

Благодаря двухстадийному способу работы становится возможной быстрая кристаллизация при избежании кристаллических смешанных (побочных) фаз. Это достигается благодаря тому, что в реакционной смеси из жидкого стекла, сульфата алюминия, сульфата натрия и серной кислоты при турбулентном протекании происходит идеальная теплопередача и массопередача с превращением веществ и становится возможной термическая стабилизация после кратковременной продолжительности реакции в результате быстрого снижения температуры, при которой сильно уменьшается образование смешанных (побочных) фаз.

Реакционную смесь нагревают примерно в течение 1 мин при 250-325oC и после протекания реакции 5-15 мин при максимально выбранной температуре примерно за 1 мин охлаждают до 245oC. При этих температурах давление составляет 60-150 бар.

Способ осуществляют следующим образом.

Суспензию, например, из жидкого стекла, сульфата алюминия, сульфата натрия и серной кислоты со следующими молярными соотношениями: SiO2/Al2O3 20-60 OН-/SiO2 0,10-0,20 H2O/SiO2 20-60 из емкости для хранения подают поршневым мембранным насосом. Ее нагнетают в трубчатую систему, состоящую из теплообменников, как правило 3-4, которые теплотехнически расположены так, что заданное количество суспензии в течение примерно 1 мин может нагреваться до 300oС, причем для этой цели можно использовать пар высокого давления, масло или соль в качестве теплоносителя или электрический нагрев. К теплообменникам присоединяются участки любой длины для протекания реакции, которые, как правило, обеспечивают задерживание там при максимально установленной температуре 5-15 мин. Диаметр трубки выбирается так, чтобы при заданных давлениях в каждом случае сохранялся турбулентный поток. Затем осуществляют охлаждение реакционной смеси либо путем понижения давления, либо путем теплообмена до желательной температуры для фазы роста кристаллов, которая находится в области 120-225oC. Для того чтобы достичь оптимальной кристалличности, время пребывания в температурном интервале 180-220oC составляет 5-10 ч. При этих температурах кристаллизации работают с обогреваемыми автоклавами для протекания реакции. По окончании кристаллизации в автоклавах реакционная смесь охлаждается путем понижения давления или теплообмена в течение 1-5 мин до температур ниже 95oC.

Благодаря добавке зародышей кристаллизации можно далее снизить время на синтез.

Технологическая схема предлагаемого способа состоит в следующем: Реакционная смесь Нагрев 10-120 с I-я стадия синтеза 245-325oC/1-20 мин Охлаждение t 80oC 10-120 с 2-я стадия синтеза 120-225oC/1-100 ч

Охлаждение за 0,5-5 мин до < 95oC

Фильтрация

Продукт
П р и м е р 1. Реакционную смесь из растворов натриевого жидкого стекла, сульфата алюминия, сульфата натрия и серной кислоты с молярными соотношениями SiO2/Al2O3 27; OН-/SiO2 0,14, H2O/SiO2 30 и с температурой 60oC непрерывно подают из емкости для хранения поршневым насосом. В трубчатой системе из трех теплообменников реакционная смесь в течение 1 мин нагревается до 270oС. После пребывания 10 мин при этой температуре в участке для про протекания реакции реакционная смесь охлаждается до 185oC. Затем реакционную смесь подводят в каскад автоклавов для протекания реакции, где гидротермально обрабатывают далее при 185oC со средним временем пребывания 10 ч, в последовательно подключенном автоклаве путем понижения давления и теплообмена охлаждают до примерно 60oC, непрерывно отводят и фильтруют. Остаток на фильтре содержит Pentasil-цеолитную долю 60% и кроме аморфных частей не имеет никаких других кристаллических смешанных (побочных) фаз.

П р и м е р 2. В реакционную смесь из растворов натриевого жидкого стекла, сульфата натрия и серной кислоты с молярными соотношениями SiO2/Al2O3 27, OН-/SiO2 0,14; H2O/SiO2 30 и температурой 60oС вводят 2% зародышей затравки (продукт из примера 1). Эту реакционную смесь непрерывно подают из емкости-сборника поршневым насосом. В трубчатой системе из трех теплообменников реакционная смесь нагревается в течение 1 мин до 270oC. После пребывания в течение 10 мин при этой температуре на участке протекания реакции реакционная смесь охлаждается до 185oC. Затем реакционную смесь подводят к каскаду автоклавов для продолжения реакции, где при 185oC ее обрабатывают гидротермально при среднем времени пребывания 10 ч, охлаждают в последовательно подключенных автоклавах путем понижения давления и теплообмена примерно до 60oC, непрерывно отводят и отфильтровывают. Осадок на фильтре содержит Pentasil-цеолитную часть в количестве 95% и кроме аморфных частей не содержит никаких других кристаллических смешанных (побочных) фаз.

П р и м е р 3. В реакционную смесь из растворов натриевого жидкого стекла, сульфата алюминия, сульфата натрия и серной кислоты с молярными соотношениями SiO2/Al2O3 50, OН-/SiO2 0,14, H2O/SiO2 40 и температурой 60oC непрерывно подают из емкости-сборника поршневым насосом. В трубчатой системе из трех теплообменников реакционную смесь нагревают в течение 1 мин до 270oC. После длительности реакции 10 мин при этой температуре на участке продолжения реакции реакционную смесь охлаждают до 185oC.

После этого реакционную смесь подают в каскад автоклавов для продолжения реакции, где ее далее обрабатывают гидротермально при 185oC при среднем времени пребывания 10 ч, охлаждают в последовательно подключенном автоклаве за счет снижения давления и теплообмена примерно до 60oC, непрерывно отводят и фильтруют. Остаток на фильтре содержит Pentosil цеолитную часть 50% и кроме аморфных частей не содержит никаких других кристаллических смешанных (побочных) фаз.

П р и м е р 4. В реакционную смесь из растворов натриевого жидкого стекла, сульфата алюминия, сульфата натрия и серной кислоты с молярными соотношениями SiO2/Al2O3 40, OH-/SiO2 0,14; H2O/SiO2 40 и температурой 60oC вводят 2% зародышей (кристаллизации) [продукт из примера] 3. Эту реакционную смесь непрерывно подают из емкости-сборника поршневым насосом. В трубчатой системе из трех теплообменников реакционную смесь нагревают в течение 1 мин до 270oC. После продолжительности пребывания 10 мин при этой температуре на участке продолжения реакции реакционную смесь охлаждают до 185oC.

Затем реакционную смесь подают в каскад автоклавов для продолжения реакции, где далее обрабатывают гидротермально при 185oC при среднем времени пребывания 10 ч, в последовательно подключенном автоклаве охлаждают путем понижения давления и теплообмена до примерно 60oC, непрерывно отводят и отфильтровывают. Осадок на фильтре содержит Pentasil-цеолитную часть 80% и кроме аморфных частей не содержит никаких других кристаллических смешанных (побочных) фаз.


Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ ЦЕОЛИТНЫХ АЛЮМОСИЛИКАТОВ С МОЛЯРНЫМ ОТНОШЕНИЕМ SiO2 /Al2O3 НЕ МЕНЕЕ 20, включающий перемешивание источников диоксида кремния, оксида алюминия, минеральной кислоты и затравочных кристаллов в водной щелочной среде и гидротермальную кристаллизацию, отличающийся тем, что, с целью повышения фазовой частоты продукта и снижения длительности ведения процесса, перемешивание проводят при следующих молярных отношениях компонентов:
SiO2 / Al2O3 20 - 60
OH- / SiO2 0,1 - 0,2
H2O / SiO2 20 - 60
затем смесь нагревают в течение 10 - 120 с до 245 - 325oС, при этой температуре проводят первую стадию кристаллизации в течение 1 - 20 мин, после чего смесь охлаждают в течение 10 - 120 с не менее чем на 80oС, вторую стадию кристаллизации проводят при 120 - 225oС в течение 1 - 100 ч и после этого смесь охлаждают в течение 0,5 - 5,0 мин от температуры менее 95oС.

2. Способ по п.1, отличающийся тем, что перед гидротермальной кристаллизацией к реакционной смеси добавляют органические соединения аммония.

PC4A - Регистрация договора об уступке патента Российской Федерации на изобретение

Номер и год публикации бюллетеня: 36-1998

(73) Патентообладатель:
Фирма "АЛСИ-ПЕНТА ЦЕОЛИТЕ ГМБХ"

Договор зарегистрирован 24.11.1997

Извещение опубликовано: 27.12.1998        



 

Похожие патенты:

Изобретение относится к материалам, содержащим молекулярное сито, внедренное в носитель, применяемым в качестве адсорбентов и фильтров
Изобретение относится к высокодисперсному кристаллическому порошку цеолитов типа 4А с предопределяемым гранулометрическим составом (определяемым значением d50) менее 3 мкм, к способу его получения, а также к его применению в качестве заменителя фосфата в жидких детергентах и средствах для полоскания или добавки к керамическим глазурям и спекшимся массам (фриттам)

Изобретение относится к синтетическому материалу, содержащему окиси кремния, титана и галлия, имеющему пористую кристаллическую структуру цеолитного типа, а также к процессу получения указанного материала

Изобретение относится к способам реактивации цеолитовых молекулярных сит, используемых для получения н-алканов из смесей углеводородов, дезактивированных отложениями углеродсодержащих соединений , позволяет повысить емкость молекулярных сит и сократить образование нитрозных газов

Изобретение относится к области металлургии, именно к получению технического кремния и его сплавов восстановительной плавкой в электропечах
Изобретение относится к области аналитической химии, а именно к способам определения различных восстановителей в водных растворах с помощью фосфорно-молибденовых гетерополисоединений

Изобретение относится к области аналитической химии, а именно к способам получения пористого диоксида кремния, обладающего заданными физико-химическими характеристиками

Изобретение относится к способам получения кремния, отличающееся от известных карботермических способов тем, что плотный кремний кубической структуры получается из других элементов, алюминия и фосфора, при действии электромагнитного поля при плотности тока не менее 1011 А/м2 на смесь кристаллических веществ, содержащих основные элементы О - Аl - Р

Изобретение относится к металлургии редких тугоплавких металлов, кремния и их соединений и может быть использовано для их получения плазмохимическим взаимодействием исходных газообразных соединений

Изобретение относится к технологии получения материалов, а именно к технологии получения поликристаллического кремния и его химических соединений - карбида и нитрида - из природных кремнийсодержащих концентратов

Изобретение относится к синтетическим драгоценным камням из полупрозрачного монокристаллического карбида кремния и может быть использовано в ювелирной промышленности

Изобретение относится к области обогащения природных минералов и руд химическим методом и может быть использовано в тех случаях, когда основной балластной примесью является окись кремния
Изобретение относится к технологии переработки отходов, включающих соединения титана и кремния, и может быть использовано для улучшения экологической ситуации путем переработки техногенных отходов, а также расширения сырьевой базы для получения товарных продуктов - диоксида титана и карбида кремния
Наверх