Электростатический спектрометр заряженных частиц

 

Использование: относится к спектрометрии корпускулярных излучений, преимущественно к исследованию энергетических спектров на космических аппаратах. Анализатор образован двумя плоскими конденсаторами. За ними расположен детектор. Повышение его чувствительности достигается путем указания ограничений на его геометрические параметры и выполнения его в виде пакета из одинаковых анализаторов. 1 з.п. ф-лы, 8 ил.

Изобретение относится к спектрометрии корпускулярных излучений, преимущественно к исследованию энергетических спектров космических частиц на ИСЗ и космических аппаратах.

Известны электростатические спектрометры для измерения дифференциальных энергетических спектров, содержащие электростатические анализаторы, в которых применяется отклоняющий конденсатор с неплоскими пластинами, чаще всего с пластинами сферической [1] или цилиндрической [2] формы. Однако расширение диапазона исследуемых энергий в сторону их увеличения усложняет реализацию анализаторов подобного типа, так как требует прецизионного изготовления криволинейных поверхностей с большим радиусом кривизны.

Известен также дифференциальный электростатический спектрометр типа плоского электронного зеркала [3], в котором анализируемые частицы вводятся в зазор плоского конденсатора через отверстие в одной из пластин под углом к пластине, а выводятся через другое отверстие в той же пластине после отклонения частиц в электрическом поле конденсатора. Однако при высоких энергиях эффективный размер входного окна в таком спектрометре становится весьма малым и чувствительность спектрометра мала.

Наиболее близким к заявляемому изобретению представляется устройство с двумя плоскими конденсаторами, состыкованными под некоторым углом (далее - шевронный анализатор). Схема расположения электродов опубликована в [4]. Однако в [4] решена лишь математическая задача об электрическом поле в зазоре такого шевронного конденсатора с полубесконечными пластинами. Приведенное в [4] шевронное расположение является необходимым, но еще не достаточным условием построения дифференциального анализатора. Очевидно также, что анализатор с полубесконечными пластинами неработоспособен.

Целью изобретения является увеличение отношения сигнал/шум путем указания ограничений на геометрические и электрические параметры такого анализатора, достаточные для обеспечения его работы в нужном дифференциальном режиме.

Цель достигается тем, что угол шеврона выбирается равным 180о - 2 , где угол находится в пределах tg , где 2d - величина зазора между пластинами конденсатора; L - длина пластины (фиг. 1).

Целью изобретения является также повышение чувствительности анализатора.

Анализатор (фиг. 1) содержит пару плоских конденсаторов с обкладками 1, 2 и 3, 4, источник 5 питания и детектор 6. Исследуемые частицы попадают внутрь конденсатора (1, 2) через его торец 7. На фиг. 2-6 показаны траектории частиц, соответствующие минимальной T1 и максимальной T2 энергиям частиц, проходящих через анализатор и попадающих на детектор. На фиг. 2 показаны также система координат и величины, используемые ниже при вычислении граничных энергий T1 и T2.

Анализатор работает следующим образом. Заряженная частица влетает в зазор анализатора в точке yo (фиг. 2) под углом , определяемым из соотношения tg = = y, и далее движется в электрическом поле Е по траектории, описываемой уравнением y = _ x2+yx+yo (1) где K = , qe - заряд частицы; T - кинетическая энергия частицы в свободном от поля пространстве.

Минимальной энергии T1 соответствует K1 и в первом конденсаторе траектория с yo= = -d (d - полуширина зазора между пластинами), yk = d (yk - значение y в точке касания xk), yk' = 0, yL' = -tg (yL' - значение y' при выходе из зазора первого конденсатора). Во втором конденсаторе траектория с T1 симметрична траектории в первом конденсаторе относительно вертикали на фиг. 2. Для отыскания K1, xk, yo', yL воспользуемся уравнением траектории (1) для x = L.

yL= - L2+yL-d а также продифференцированным по x уравнением (1) в точке x = xk -tg = - L+y Напишем также соответствующие уравнения для x = xk d = - x2k + yxk-d 0 = - xk+y Из этих уравнений находим связь между K1, tg и геометрией конденсатора = k1 = Подставив в эту формулу K1= ,E = = , где U - разность потенциалов между пластинами конденсатора, а также выразив tg в единицах , т.е. положив tg= , получим окончательно для T1 T1 = qeU (2) При <<11 qeU Зависимость от , показана на фиг. 7.

Максимальной энергии T2 соответствует K2. При угле 1 , отвечающем соотношению tg = = (т.е. = 1), анализатор оптически непрозрачен, его пропускание частиц с энергией T2= становится нулевым (фиг. 3), при дальнейшем увеличении анализатор становится дифференциальным, т.е. пропускает только частицы с энергиями, находящимися между T1 и T2.

Зависимость T2 (,) в интервале углов между 1 и 2 , показанными на фиг. 3 и 4, находится с использованием условий на входе и выходе yo = d, yL = -d, yL' = -tg . Для уравнения траектории (1) в этом интервале имеем -d = - L2+yL+d Дифференцируя по x в точке x = L, имеем также -tg = - L + y Зависимость T2 (,), полученная из этих уравнений, имеет вид
T2= qeU (3) При <<1
2= qeU При =2 (фиг. 4) условия на входе и выходе имеют вид yo = d, yo' = 0, yL = -d, yL' = - tg 2, а T2= qeU и tg 2 = 2 , т. е. = 2.

В интервале углов между 2 и 3 (фиг. 4 - 6) траектории частиц с T2 определяются величинами yk = d, yk' = 0, yL= = -d, yL' = -tg . Соответствующая пара уравнений для части траектории (фиг. 5), начинающейся в xk, будет иметь вид
-d = - (L-xk)2+d
-tg = - (L-xk) Полученная из этих уравнений зависимость T2 (, ) выражается как
T2= qeU (4) При <<1
2 qeU При = 2, когда = 2, (4) совпадает с (2). Оба участка (3) и (4) показаны на фиг. 7.

Предельный угол =3 анализатора соответствует случаю, когда T1 = T2, т. е. случаю, когда анализатор "запирается" и перестает пропускать частицы. Угол3 определяется соотношением tg3=4 , т.е. = 4. Значение T2 = T1 при 3 равно qeU .

Таким образом, предлагаемое устройство в виде двух одинаковых простых плоских конденсаторов, расположенных в форме шеврона (фиг. 1), без каких-либо дополнительных коллиматоров на входе, снабженное только источником питания и детектором частиц, образует дифференциальный электростатический спектрометр с границами пропускания по энергии T1 и T2 в интервале углов , определяемом соотношением tg4.

Шевронный электростатический анализатор такого спектрометра позволяет продвинуться в область высоких энергий без изменения формы пластин конденсаторов или U путем лишь изменения угла шеврона и расстояния между пластинами; позволяет изменять ширину полосы пропускания T2-T1 при данном путем изменения ; прост по конструкции и в изготовлении, так как имеет плоские обкладки отклоняющих конденсаторов и не требует специального коллиматора на входе; входным окном служит торец первого конденсатора.

Наличие двух одинаковых конденсаторов не является необходимым условием конструкции предлагаемого устройства. Анализатор в виде расположенных под углом 180о - 2 двух конденсаторов с разными 1 и 2 также работоспособен, но значения T1 и T2 для такого анализатора будут отличаться от приведенных на фиг. 7.

Для работы в области высоких энергий предлагаемый одиночный шевронный анализатор будет иметь малую величину , если на его продольный габарит наложены ограничения, а следовательно, малую площадь входного зазора и малую чувствительность. Однако шевронная геометрия, в отличие от сферической или цилиндрической, позволяет увеличить чувствительность в n раз путем объединения n одинаковых пар рассмотренных конденсаторов в пакет (фиг. 8). Обкладками соседних пар служат в таком пакете изолированные один от другого проводящие слои, нанесенные на противоположные стороны пластин из изоляционного материала.

В качестве примера рассмотрим характеристики шевронного анализатора с T2 = =1,2 МэВ; U = 20 кВ; = 3. Значение для диапазона 2...4 находится по формуле (4)
2= = = 1.8710-3
= 4.3210-2
tg=3=0,1296; =7o25' Значение T1 находится по формуле (2)
2 = 0.02 = T = T2-T1 = 1,2-0,824 = 0,376 МэВ. Средняя энергия To = (T1+T2)/2 = 1,042 МэВ. T/To= = 0,376/1,042 = 0,361 = 36,1%. ( T/To)1/2 = =18%, что вполне приемлемо для измерений в космическом пространстве. В случае же цилиндрического конденсатора с 2d = r= 1 см для энергии To 1 МэВ при U = =20 кВ потребовались бы отклоняющие пластины с радиусами кривизны ~ r = 1 = 100 см = 1 м. Многослойный шевронный анализатор может быть изготовлен, например, из фольгированного стеклотекстолита.


Формула изобретения

1. ЭЛЕКТРОСТАТИЧЕСКИЙ СПЕКТРОМЕТР ЗАРЯЖЕННЫХ ЧАСТИЦ, содержащий анализатор, выполненный из двух пар одинаковых плоских конденсаторов, расположенных в форме шеврона, источник питания и детектор заряженных частиц, отличающийся тем, что, с целью увеличения отношения сигнал/шум путем обеспечения дифференциального режима, угол шеврона равен 180o - 2 , где угол находится в пределах, указываемых соотношением
tg ,
где 2d - величина зазора между пластинами конденсатора, м;
L - длина пластины.

2. Спектрометр по п.1, отличающийся тем, что, с целью повышения чувствительности, анализатор выполнен в виде пакета из расположенных одна над другой одинаковых пар упомянутых плоских конденсаторов, при этом обкладки соседних пар конденсаторов выполнены в виде изолированных один от другого проводящих слоев, нанесенных на противоположные стороны пластины из изоляционного материала.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8



 

Похожие патенты:
Изобретение относится к физической электронике и может быть использовано в электронных спектрометрах, обладающих угловым разрешением, составляющим десятые доли градуса и меньше, и энергетическим разрешением Е, меньшим величины теплового разброса электронов Ес 0,2 - 0,6 эВ, эмиттированных катодом пушки

Изобретение относится к приборам для анализа угловых и энергетических распределений заряженных частиц и может применяться для исследования твердого тела, плазмы, процессов электронных и атомных столкновений

Изобретение относится к приборам для анализа заряженных частиц по углу и энергии и может применяться для исследования поверхности вещества, плазмы, процессов электронных и атомных столкновений

Изобретение относится к физической электронике и может быть применено для формирования и анализа пучков заряженных частиц малых энергий

Изобретение относится к аналитическому приборостроению, в частности к электронной и ионной спектроскопии

Изобретение относится к спектроскопии пучков заряженных частиц и может быть использовано при создании светосильных энергоанализаторов высокой разрешающей способности для исследования энергоугловых распределителей в потоках заряженных частиц малых и средних энергий

Изобретение относится к спектроскопии пучков заряженных частиц и может быть .использовано для создания электростатических энергоанализаторов с высокой светосилой , обладающих высокими 22 разрешающей способностью, чувствительностью и хорошей эффективностью работы в сверхвысоковакуумных электронных спектрометрах

Изобретение относится к устройствам для анализа распределения заряженных частиц и может быть использовано при физико-химическом анализе твердого тела в вакууме

Изобретение относится к области экспериментальной и прикладной ядерной физики и может быть использовано в активационном анализе, радиохимии, спектрометрии

Изобретение относится к ядерной физике, в частности к способам измерений энергетических спектров ядерно-активных частиц адронов (нейтронов, протонов, ТГ-мезонов) с помощью, выбора пороговых детекторов

Изобретение относится к технической физике и является усовершенствованием способа по авт.св

Изобретение относится к области прикладной ядерной физики

Изобретение относится к технике исследования физических свойств приповерхностного слоя твердых тел (ТТ) и может использоваться при измерениях плотности уровней электронов вблизи поверхности Ферми и работы их выхода из ТТ

Изобретение относится к ядерной физике и может быть использовано для энергетического спектрометрирования и идентификации продуктов ядерных реакций
Наверх