Способ измерения энергии оптических сигналов

 

Использование: измерение энергии оптических сигналов, в частности измерение сигналов малых энергий, уровень которых в 4 - 5 раз ниже обнаружительной способности фотодетектора. Сущность изобретения: осуществляют заряд конденсатора темновым током фоточувствительного элемента с линейными световыми характеристиками до заданного напряжения Un , разряжают конденсатор, заряжают конденсатор током, возникающим при воздействии измеряемого оптического сигнала, разряжают конденсатор, при этом измеряют длительности временных интервалов изменения напряжения в обоих циклах, по которым судят об энергии оптических сигналов. 3 ил.

Измерение относится к технике фотометрических измерений и может быть использовано для измерения энергии оптических сигналов в медицине, химии, метрологии, денситометрии и т.п.

Известен способ измерения энергетических параметров световых импульсов (1), заключающийся в воздействии оптических сигналов на фотодетектор, преобразовании этих сигналов в электрические, выделении их на нагрузочном сопротивлении фотодетекторе, последующем усилении и интегрировании сигналов и формировании выходного сигнала, амплитуда которого пропорциональна энергии сигнала. К недостаткам этого способа относятся отсутствие учета влияния шумов и дрейфа устройств, реализующих усиление и интегрирование сигналов на точность измерений, а также влияние темнового тока фотодиода.

Наиболее близким к изобретению является способ измерения энергии оптических сигналов (2), заключающийся в модулировании непрерывного оптического сигнала постоянной частотой с равномерными временными интервалами открытого оптического входа и закрытого его состояния, преобразовании оптических сигналов в электрические при открытом оптическом входе, усилении сигналов, их интегрировании и запоминании. При закрытом оптическом входе производится усиление сигнала темнового тока фотодетектора, инвертирование и интегрирование. В результате изменения полярности инвертором осуществляется вычитание погрешности, вызванной воздействием темнового тока. Мощность оптического сигнала определяется уровнем разностного напряжения на выходе устройства. К недостаткам этого способа относится то, что средняя точность измерений обеспечивается при измерении лишь стационарных оптических сигналов.

Цель изобретения - повышение точности и расширение диапазона измерений.

Поставленная цель достигается тем, что в способе измерения энергии оптических сигналов, заключающемся в преобразовании оптических сигналов в электрические с помощью фоточувствительного элемента с линейными световыми характеристиками, заряда конденсатора темповым током фоточувствительного элемента, разряде конденсатора, заряде конденсатора током, возникающим при воздействии измеряемого оптического сигнала, разряде конденсатора, заряд конденсатора темновым током и током, возникающим при воздействии оптического сигнала, производят до одного и того же порогового напряжения Un, разряд конденсатора осуществляют мгновенно до нуля в каждом цикле после достижения Un, измеряют длительности временных интервалов изменения напряжения в обоих циклах и определяют энергию оптических сигналов ЕF из соотношения EF= где Т1 - длительность временного интервала, сформированного при воздействии темнового тока, Т2 - длительность временного интервала, сформированного при воздействии измеряемого оптического сигнала, С - емкость конденсатора.

На фиг.1, 2 и 3 показаны временные диаграммы напряжений.

При измерении энергии непрерывного оптического сигнала (см.диаграмму фиг. 1) источником ЭДС формируется напряжение, характеризуемое стороной АЕ треугольника АEF. Сторона треугольника EF показывает разряд емкости. Треугольник AEF графически отражает энергию Е, затрачиваемую источником, работающим в режиме темнового тока: E = , Дж/ при значении темнового тока Iт= , A где Q и U - заряд и напряжение на конденсаторе.

При воздействии оптического сигнала крутизна нарастания напряжения увеличивается, а время заряда конденсатора до порогового уровня уменьшается до значения Т2 (Второй период). Сформирован второй треугольник - ABD, отражающий воздействие суммарного (светового и темнового) тока I . Его величина определяется значением I= , A a световой ток IF представлен величиной IF = I-Iт= - = , A Как явствует из графика, треугольник АВС сформирован воздействием оптического сигнала. При этом прирост напряжения, обусловленный воздействием этого сигнала ( U) показан отрезком ВС.

Произведением токовой величины (IF) и времени воздействия непрерывного оптического сигнала определяется зарядная величина QF = Ik T2= T2= , Ac а прирост напряжения на конденсаторе (U) соответствует величине U = Un-Un = , B Энергия сигнала: E = = = = , Дж. Однако, вольт-секундная составляющая энергии (S ABC), вследствие влияния известного фактора , изменяется нелинейно. Введением корректирующей поправки нелинейность устраняется.

EF = E = = , Дж
При длительности оптических сигналов, превышающей временной интервал Т2 осуществляют многократное измерение энергии, а результат измерений суммируют.

При этом вольт-секундная составляющая энергия равна
= : = , Bc и графически отображается площадью треугольника DEF.

Анализ графика на фиг.2, представляющего импульсную последовательность оптических сигналов, показывает, что суммарный прирост напряжения на конденсаторе, являющийся результатом воздействия соответствующих световых токов, равен приросту напряжения U (сторона ВС треугольника АВС), что определяется равенством
U1+ U2= + = = Uэкв, B где U1 - прирост напряжения от первого импульса U2 - прирост напряжения от второго импульса; I и I - соответствующие им световые токи, при неизменной емкости конденсатора.

Следовательно, энергию последовательности оптических сигналов приемлемо рассматривать описанным выше способом.

EF= = = , Дж
При определении энергии оптических сигналов произвольной формы (график на фиг. 3), аппроксирование позволяет рассматривать их, как непрерывную последовательность прямоугольных импульсов, а энергию оценивать аналогично указанному выше.


Формула изобретения

СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ ОПТИЧЕСКИХ СИГНАЛОВ, заключающийся в преобразовании оптических сигналов в электрические с помощью фоточувствительного элемента с линейными световыми характеристиками, заряде конденсатора темновым током фоточувствительного элемента, разряде конденсатора, заряде конденсатора током, возникающим при воздействии измеряемого оптического сигнала, разряде конденсатора, отличающийся тем, что заряд конденсатора темновым током и током, возникающим при воздействии оптического сигнала, производят до одного и того же порогового напряжения Uп, разряд конденсатора осуществляют мгновенно до нуля в каждом цикле после достижения Uп, измеряют длительности временных интервалов изменения напряжения в обоих циклах и определяют энергию оптических сигналов F из соотношения
F= , Дж,
где T1 - длительность временного интервала, сформированного при воздействии темнового тока;
T2 - длительность временного интервала, сформированного при воздействии измеряемого оптического сигнала;
C - емкость конденсатора.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к фотометрии и может быть использовано для измерения величины световых потоков

Фотометр // 1805301

Фотометр // 1790741

Изобретение относится к приборостроению, а именно к технике измерения фотометрических параметров, и может найти применение на аэродромах для измерения оптических характеристик атмосферы при определении видимости световых ориентиров взлетно-посадочной полосы (ВПП) в ходе метеорологического обеспечения действия авиации на аэродроме

Изобретение относится к технике регистрации слабых световых сигналов и может быть использовано в светолокации, оптической связи, астрофизике, биофизике, ядерной физике, сцинтилляционной технике и т.п

Изобретение относится к области контроля оптической плотности сред, частично поглощающих или рассеивающих оптическое излучение, а также контроля величин, однозначно связанных с оптической плотностью

Изобретение относится к области измерения интенсивности УФ-излучения и может быть использовано для измерения и контроля интенсивности излучения источников УФ бактерицидного диапазона, применяемых в установках для обеззараживания и дезинфекции жидкостей

Изобретение относится к технике регистрации слабых световых сигналов и может быть использовано в астрофизике, биофизике, сцинтилляционной технике, светолокации и т.п

Изобретение относится к контрольно-измерительной технике, а именно к фотоприемным устройствам, и может быть использовано, в частности, при измерении температуры нагретых изделий в различных отраслях промышленности

Изобретение относится к области фотометрии и может быть использовано в оптико-электронных приборах с фотодиодными преобразователями излучений

Изобретение относится к области фотометрии и пирометрии и может быть использовано для измерения световых потоков ИК, видимого и ультрафиолетового диапазонов, а также может быть использовано в качестве датчиков пламени и температуры
Наверх