Способ определения теплопроводности твердых материалов и устройство для его осуществления

 

Изобретение относится к теплофизическим измерениям, в частности теплопроводности твердых материалов, таких как горные породы и строительные материиалы. Сущность изобретения заключается в создании нагревателями тепловых потоков в иследуемый и эталонный образцы и поддерживании равных температур на них. Во время измерений на нагреватель эталона подается ток постоянной величины. Ток на нагревателе исследуемого материала увеличивается или уменьшается в зависимости от знака сигнала, поступающего с мостиковой схемы, служащей для измерения перепада температур между нагревателями. Этот процесс продолжается до тех пор, пока величина сигнала не станет ниже пороговой и не будет оставаться такой в течение времени = h2/8 , где H - характерный размер образца; c - температуропроводность образца. Для увеличения точности измерений в устройство для осуществления способа включены блоки сравнения, регулирования, регистрации, а также блок задания параметров эталона. Перед измерениями эталонный и исследуемый образцы размещаются в измерительной ячейке, выполненной из высокопроводного материала. Нагреватели установлены на теплоизоляционных пластинах, между которыми установлены стойки из эластичного материала. Нагреватели связаны между собой резиновой муфтой. 2 с. и 1 з.п.ф-лы, 1 ил.

Изобретение относится к теплофизическим измерениям, в частности теплопроводности твердых материалов, таких как горные породы и строительные материалы.

Известен способ определения теплопроводности, заключающийся в создании нагревателями тепловых потоков в исследуемом и эталонном образцах и поддержании в них равных температурных перепадов [1].

Недостатком этого способа является необходимость поддержания и измерения перепада температур на образцах, что приводит к сложности реализации этого способа в полевых условиях.

Наиболее близким по технической сущности к предлагаемому является способ определения коэффициента теплопроводности, заключающийся в создании нагревателями тепловых потоков в исследуемый и эталонный образцы и поддержании равных температур в зоне контактов нагревателей с образцами путем регулирования мощности нагревателей до установления стационарного режима теплопередачи и определении коэффициента теплопроводности по известной формуле [2].

Основными недостатками известного способа являются его невысокая точность, а также необходимость ручной регулировки мощности нагревателей, что значительно увеличивает время измерений.

Известно устройство для измерения теплопроводности твердых образцов, содержащее эталон, нагреватели образца и эталона, теплоприемник, тепломеры. При измерениях на противоположных поверхностях эталона и образца, имеющих одинаковую высоту, создают равные перепады температур, тогда плотности установившихся тепловых потоков через эталон и образец пропорциональны их коэффициентам теплопроводности [3].

Недостатком устройства является необходимость поддержания и измерения перепада температур на образцах, что приводит к сложности реализации исследований в полевых условиях.

Наиболее близким к предлагаемому является устройство, содержащее два коаксиально размещенных нагревателя, тепломер, эталон [4].

Недостатками устройства являются невысокая точность измерений, а также необходимость ручной регулировки мощности нагревателей и расчета коэффициента теплопроводности по формуле, что значительно увеличивает время измерений.

Изобретение направлено на решение задачи по повышению точности измерений теплопроводности и сокращение времени измерений.

Это достигается тем, что по способу определения теплопроводности твердых материалов, заключающемуся в создании нагревателями тепловых потоков в исследуемый и эталонный образцы, поддержание равных температур на нагревателях и определении величины коэффициента теплопроводности по известной формуле, поддерживают постоянным ток на нагревателях эталона, определяют знак сигнала в измерительной диагонали моста, в плечи которого включены датчики температуры нагревателей, а также факт превышения сигналом пороговой величины, которая равна напряжению в измерительной диагонали моста на пределе зоны чувствительности измерительной схемы, затем в зависимости от знака сигнала увеличивают или уменьшают ток на нагревателе исследуемого материала до тех пор, пока величина сигнала с моста не станет меньше пороговой, причем эту операцию повторяют, пока сигнал не будет оставаться меньше пороговой величины в течение времени = , где h - характерный размер образца; - температуропроводность.

В устройстве для определения теплопроводности твердых материалов, содержащем два коаксиально размещенных электрических нагревателя и эталон, на провод, из которого выполнены нагреватели, намотаны провода с высоким температурным коэффициентом и включены в плечи мостиковой схемы для обеспечения регистрации перепада температур, нагреватели установлены на теплоизоляционных пластинах и размещены в ячейке из высокотеплопроводного материала с возможностью их осевых перемещений, мостиковая схема соединена с входом блока сравнения, а выход последнего - с блоком регулировки, один выход которого связан с нагревателем исследуемого материала для изменения тока на нем, а другой - с первым входом блока регистрации, на второй вход которого подают сигнал с блока задания параметров эталона, причем для обеспечения осевых перемещений нагревателей они связаны между собой муфтой из эластичного материала и между теплоизоляционными пластинами установлены стойки из того же материала.

На чертеже представлена схема устройства, осуществляющего предлагаемый способ.

Устройство включает ячейку 1 из высокотеплопроводящего материала, нагреватели 2, установленные на теплоизоляционных пластинах 3, между которыми размещены стойки 4 из эластичного материала, муфту 5, усилитель 6, блоки сравнения 7, регулировки 8, регистрации 9, а также блок 10 задания параметров эталона.

Измерительная ячейка 1 выполнена из высокотеплопроводного материала (например, медь, алюминий). Это обеспечивает быстрое выравнивание температур на торцовых поверхностях образцов во время измерений, что позволяет исключить необходимость использования системы принудительного термостатирования. Наличие эластичных стоек 4 дает возможность обеспечить хороший тепловой контакт нагревателей с образцами, если их торцовые поверхности не совсем плоскопараллельны. Для уменьшения инерционности измерительного датчика термометры сопротивления выполнены в виде намотки, например, медного провода виток к витку, из которого выполнен нагреватель.

Во время измерений сигнал с мостиковой схемы поступает на усилитель 6, а затем на блок 7 сравнения. Здесь определяются его знак и факт превышения пороговой величины, за которую принимается напряжение в измерительной диагонали моста при его минимальной чувствительности. После преобразования сигнала в блоке 7 он поступает на блок 8 цифроаналогового регулирования тока, который связан с нагревателем исследуемого материала и в зависимости от знака сигнала увеличивает или уменьшает ток на нем. Процесс измерения продолжается до тех пор, пока сигнал не установится ниже порогового и не будет оставаться таким в течение определенного времени , равного наибольшему времени прохождения теплового возмущения через измеряемый образец для исследуемого ряда материалов. После того, как величина сигнала установится ниже пороговой, информация поступает на блок 9 регистрации. Так как в данном случае реализуется сравнительный метод измерений, то на второй вход блока регистрации поступает сигнал с блока 10 задания параметров эталона. На нем перед измерениями устанавливаются данные о теплопроводности эталона. После несложных цифроаналоговых преобразований сигналов на цифровом табло блока 9 появляется информация о теплопроводности исследуемого материала.

Пример конкретного выполнения измерений. Образцы исследуемого и эталонного материалов устанавливают на соответствующих нагревателях 2, размещаемых в ячейке 1. Вводят в блок 10 информацию об использованном эталоне. Включают устройство. На нагреватель эталона подается ток постоянной величины. На нагревателе исследуемого материала ток начинает монотонно увеличиваться. Сигнал, поступающий с мостиковой схемы, через усилитель 6 подается на блок 7 сравнения, где он преобразуется и в виде логических уровней поступает на блок 8 цифроаналогового регулирования тока. Этот блок определяет факт превышения сигналом пороговой величины и в зависимости от знака, превышающей величины увеличивает или уменьшает ток на нагревателе исследуемого материала. Этот процесс продолжается до тех пор, пока температуры нагревателей не будут равны в пределах допустимой точности, т.е. величина сигнала не установится меньше пороговой и не будет оставаться такой в течение времени . После этого информация подается на блок 9, где после цифроаналоговых преобразований на цифровом табло появляется значение определяемого параметра.

Применение изобретения дает возможность повысить точность измерений и за счет автоматизации сократить их время, что существенно повышает продуктивность исследований. Наиболее актуально использование изобретения при инженерных изысканиях для исследования грунтов.

Формула изобретения

1. Способ определения теплопроводности твердых материалов, заключающийся в создании нагревателями тепловых потоков в исследуемый и эталонный образцы, поддержании равных температур на нагревателях и определении величины коэффициента теплопроводности по известной формуле, отличающийся тем, что поддерживают постоянным ток на нагревателе эталона, определяют знак сигнала, в измерительной диагонали моста, в плечи которого включены датчики температуры нагревателей, превышение сигналом пороговой величины, которая равна напряжению в измерительной диагонали на пределе зоны чувствительности измерительной схемы, затем в зависимости от знака сигнала увеличивают или уменьшают ток на нагревателе исследуемого материала до тех пор, пока величина сигнала с моста не станет меньше пороговой, причем эту операцию повторяют, пока сигнал не будет оставаться меньше пороговой величины в течение времени = , где h - характерный размер образца; - температуропроводность.

2. Устройство для определения теплопроводности твердых материалов, содержащее два коаксиально размещенные электрических нагревателя и эталон, отличающееся тем, что на провод, из которого выполнены нагреватели, осуществлены намотки провода с высоким температурным коэффициентом и включены в плечи мостиковой схемы для обеспечения регистрации перепада температур, нагреватели установлены на теплоизоляционных пластинах и размещены в ячейке из высокотеплопроводного материала с возможностью их осевых перемещений, мостиковая схема соединена с входом блока сравнения, а выход последнего - с блоком регулировки, один выход которого связан с нагревателем исследуемого материала для изменения тока на нем, а другой выход - с первым входом блока регистрации, на второй вход которого подается сигнал с блока задания параметров эталона.

3. Устройство по п.2, отличающееся тем, что нагреватели связаны между собой муфтой из эластичного материала и между теплоизоляционными пластинами установлены стойки из того же материала для обеспечения осевых перемещений нагревателей.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к тепловым испытаниям, а именно к области исследований теплофизических характеристик материалов

Изобретение относится к легкой промышленности и может быть использовано для оценки теплозащитных свойств шерстяной одежды

Изобретение относится к средствам контроля материалов и может быть использовано в ювелирной промышленности и торговле, в таможенной службе и кримина- листике

Изобретение относится к теплофизическим измерениям и может быть использовано для определения температуропроводности жидкостей и твердых материалов, в том числе для массового и экспрессного контроля теплофизических параметров электронно-оптических элементов и теплоотводов из алмазов и других материалов твердотельной технологии при их аттестации

Изобретение относится к технической физике и может быть использовано для комплексных измерений теплофизических свойств (ТФС) материалов (теплоемкости, теплопроводности и температуропроводности ) в широком диапазоне температур

Изобретение относится к технической физике, в частности к теплофизическим измерениям

Изобретение относится к области теплофизических измерений и может быть использовано в тех отраслях, где требуется определение теплопроводности объемных, тонкослойных и пленочных, в том числе обладающих анизотропией теплопроводности, материалов

Изобретение относится к области технической физики

Изобретение относится к технической физике, а именно к области исследований теплофизических свойств веществ

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплофизических свойств жидкостей и газов, в том числе и в быстропротекающих и необратимых процессах, в потоках при неустановившемся режиме и т.п., а также для измерения нестационарных температур (скоростей)

Изобретение относится к строительной теплотехнике, в частности к измерениям теплофизических характеристик (ТФХ) многослойных ограждающих конструкций (наружных перекрытий, перегородок, покрытий, полов и т.п.)

Изобретение относится к технической физике и может быть использовано для определения теплофизических характеристик материалов
Наверх