Плазмотрон

 

Использование: в технологических операциях плазменной резки, сварки, наплавки и т. п. Сущность: плазмотрон, содержащий корпус, расположенный в нем электрододержатель с установленным в нем электродом с активной вставкой, завихритель, образованный винтовыми канавками, выполненными на наружной поверхности электрододержателя, втулку, изолирующую электрододержатель от корпуса, сопло, закрепленное на корпусе, и газоподвод. Плазмотрон снабжен обечайкой, выполненной из материала с низким коэффициентом теплопроводности, установленной между изолирующей втулкой и завихрителем и жестко закрепленной между буртиками по краям завихрителя поверх канавок. Полость электрода соединена с газопроводом и полостью электрододержателя, а последняя через отверстия в изоляционной втулке соединена с каналами охлаждения корпуса. 2 з.п. ф-лы, 1 ил.

Изобретение относится к плазменной обработке материалов, в именно к устройствам для плазменной резки металлов, и может быть использовано для сварки и поверхностной плазменной обработки. Известен плазмотрон, содержащий корпус, расположенный в нем электрододержатель с закрепленными в нем электродом, керамическую шайбу, изолирующую электрододержатель от корпуса, закрепленное на корпусе сопло и газоподвод [1] Вихревая стабилизация дуги в этом плазмотроне осуществляется посредством корпуса плазмотрона, керамической шайбы, самим соплом или электродом, т.е. эти элементы плазмотрона выполняют функцию завихрителя, создавая тем самым симметричный поток плазмообразующегося газа на входе в камеру образования дуги. Однако наличие керамической шайбы, изолирующей электрододержатель от корпуса, часто приводит к ее разрушению в результате многократных тепловых деформаций, что и обуславливает создание несимметричного потока плазмообразующего газа и, следовательно, ведет к сокращению ресурса электрода.

Известен плазмотрон, содержащий корпус, расположенный в нем электрододержатель с закрепленным в нем электродом, выполненным с активной вставкой, завихритель, образованный винтовыми канавками, выполненными на наружной поверхности нижнего конца электрододержателя, втулку, изолирующую электрододержатель от корпуса, закрепленное на корпусе сопло и газоподвод [2] Однако при закручивании потока плазмообразующего газа на завихрителе возникает несимметричность потока газа, так как изолирующая втулка в результате тепловой деформации может частично сужать винтовые канавки завихрителя и даже перекрывать их. Несимметричная подача плазмообразующего газа вызывает отклонения плазменного шнура от вставки и, как следствие, разрушение электрода и косой рез на разрезаемом металле.

Наиболее близким по технической сущности и достигаемому эффекту к предложенному плазмотрону является плазмотрон, содержащий корпус, расположенный в нем электрододержатель с закрепленным в нем электродом, имеющим активную вставку, завихритель, образованный винтовыми канавками, выполненными на наружной поверхности электрододержателя [3] Плазменный резак имеет втулку, изолирующую электрододержатель от корпуса, закрепленное на корпусе сопло, а также газоподвод. Электрод выполнен с полостью, которая соединена с газоподводом и полостью электрододержателя. Полость электрододержателя через отверстия в изоляционной втулке соединена с полостью охлаждения корпуса.

В основу изобретения положена задача повышения ресурса электрода и плазмотрона в целом путем создания симметричного потока плазмообразующего газа на выходе с завихрителя.

Поставленная задача решается тем, что плазмотрон, содержащий корпус, расположенный в нем электрододержатель с закрепленными в нем электродом с активной вставкой, завихритель, образованный винтовыми канавками, выполненными на наружной поверхности электрододержателя, втулку, изолирующую электрододержатель от корпуса, сопло, закрепленное на корпусе, и газоподвод, снабжен обечайкой, установленной между изолирующей втулкой и завихрителем и жестко закрепленной поверх канавок завихрителя, электрод выполнен с полостью, которая соединена с газоподводом и полостью электрододержателя, а полость электрододержателя через отверстия в изоляционной втулке соединена с каналами охлаждения корпуса.

Обечайка выполнена из материала с коэффициентом теплопроводности не более 0,04 .

По краям завихрителя выполнены буртики для крепления обечайки. Введение в плазмотрон обечайки, расположенной между завихрителем и изолирующей втулкой и жестко закрепленной на завихрителе, позволяет обеспечить постоянство сечения винтовых канавок и тем самым создать симметричный поток плазмообразующего газа на входе в камеру образования дуги, что повышает ресурс работы электрода и качество резки.

Выполнение обечайки из материала с низким коэффициентом теплопроводности, например из нержавеющей коррозионностойкой стали типа 12Х18Н9Т, обеспечивает уменьшение теплопередачи к изолирующей втулке, в результате чего снижается вероятность ее деформации и разрушения под действием высоких температур, что улучшает охлаждение плазмотрона и тем самым повышает срок службы последнего. Таким образом достигается новый технический результат повышение срока службы электрода и всего плазмотрона за счет создания симметричного потока плазмообразующего газа на входе в камеру образования дуги.

На чертеже изображен предлагаемый плазмотрон, общий вид.

Плазмотрон имеет корпус 1, помещенный в кожух 2 из электроизоляционного материала, расположенный в кожухе 2 полый электрододержатель 3 с закрепленным в нем медным электродом 4, выполненным с активной вставкой 5 из гафния или циркония. На наружной поверхности электрододержателя 3 выполнены винтовые канавки 6, образующие завихритель 7 для закручивания плазмообразующего газа. Плазмотрон содержит пластмассовую втулку 8, изолирующую электрододержатель 3 от корпуса 1, и сопло 9, закрепленное на корпусе 1. По краям завихрителя 7 выполнены буртики 10, между которыми поверх канавок 6 установлена обечейка 11, выполненная из коррозионностойкой стали типа 12Х18Н10Т. Газоподвод 12 выполнен в виде трубки, размещенной в полости 13 электрода 4. Полость 13 соединена с газоподводом 12 и полостью 14 электрододержателя 3, которая в свою очередь соединена с отверстиями 15 в изоляционной втулке 8 и каналами 16 и 17 для охлаждения корпуса 1 и сопла 9.

Плазмотрон работает следующим образом.

Плазмообразующий газ (воздух) поступает по газоподводу 12 под давлением 4 атм от источника подачи (не показан), через вырез на конце газоподвода 12 входит в полость 13 и движется вверх, омывая внутреннюю стенку электрода 4 и охлаждая ее. Затем поток газа попадает в полость 14 электрододержателя и, проходя через отверстия 15 во втулке 8, разделяется на два потока. Одна часть газа ( 40%), предназначенная для формирования сжатой дуги, направляется на завихритель и, проходя по канавкам 6, интенсивно охлаждает обечейку 11, предотвращая тем самым нагревание и деформацию пластмассовой изоляционной втулки 8, обеспечивая тем самым симметричный поток газа, выходящего с канавок 6 завихрителя 7. Закрученный на завихрителе 7 газовый поток выходит затем с высокой скоростью в зону образования сжатой дуги для ее формирования. Другая часть газа ( 60%), предназначенная для охлаждения корпуса 1, изолирующей втулки 8 и сопла 9, устремляется при этом из полости 14 через отверстия 15 в каналы 16 и 17. Выходя из каналов 16, эта часть газа выбрасывается в атмосферу.

Таким образом за счет создания симметричного потока плазмообразующего газа, выходящего с завихрителя, увеличивается ресурс электрода в 6-7 раз. Кроме того, при резке металла с использованием предлагаемого плазмотрона обеспечивается необходимое качество резки без дополнительной регулировки.

Формула изобретения

ПЛАЗМОТРОН, содержащий корпус, расположенный в нем электрододержатель с закрепленным в нем электродом, выполненным с активной вставкой и полостью, которая соединена с газоподводом и полостью электрододержателя, завихритель, образованный винтовыми канавками, выполненными на наружной поверхности электрододержателя, расположенную между электрододержателем и корпусом изоляционную втулку с отверстиями для соединения полости электрододержателя и полости корпуса, сопло, закрепленное на корпусе, отличающийся тем, что он снабжен обечайкой, установленной между изолирующей втулкой и завихрителем и жестко закрепленной на завихрителе.

2. Плазмотрон по п.1, отличающийся тем, что обечайка выполнена из материала с коэффициентом теплопроводности не более 0,04 кал/см с град.

3. Плазмотрон по пп.1 и 2, отличающийся тем, что по краям завихрителя выполнены буртики для крепления обечайки.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области сварки и нанесения покрытий и может быть использовано в различных отраслях машиностроения

Изобретение относится к электрической контактной точечной сварке, в частности к устройствам для сварки плоских сеток, арматурных каркасов

Изобретение относится к электродуговой обработке для питания технологических установок плазменной резки, сварки, напыления и других видов обработки и может быть использовано в различных отраслях промышленности для обработки изделий из металла

Изобретение относится к устройствам для плазменной обработки, в частности к конструкциям электродных узлов плазменных горелок, охлаждаемых жидкостью

Изобретение относится к плазменной обработке материалов, а именно к устройствам для резки и сварки черных и цветных металлов

Изобретение относится к сварочной технике, в частности к устройствам для плазменной сварки и резки черных и цветных металлов в среде защитного газа

Изобретение относится к технике обновления ремонтопригодных деталей путевых машин методом плазменно-порошковой наплавки с последующей шлифовочной доводкой реконструированных образующих поверхностей

Изобретение относится к плазменной резке металлов, более конкретно к устройствам защиты персонала от светового излучения плазменной дуги и плазмотрона от наездов на неровности разрезаемого листа или кромки вырезанных деталей раскроя

Изобретение относится к сборочно-сварочным производствам машиностроительных предприятий и может быть использовано для механизированной термической вырезки отверстий в крупногабаритных изделиях коробчатой формы

Изобретение относится к электродуговым плазменным способам сварки металлов и может быть использовано в машиностроении, автомобилестроении, строительстве и многих других отраслях

Изобретение относится к плазменно-дуговой обработке материалов и может быть использовано в машиностроении и других отраслях промышленности

Изобретение относится к устройствам для обработки металла, а более конкретно к плазменной резке металла проникающей электрической дугой, и может применяться для сварки, наплавки, зачистки металла

Изобретение относится к области сварки, в частности к установкам для механизированной плазменной наплавки, и может найти применение при ремонте валов и других деталей

Изобретение относится к оборудованию для плазменной резки, в частности к горелкам для плазменной резки металла и может быть использовано в различных отраслях промышленности

Изобретение относится к области горелок для плазменно-механической обработки и, в частности, к усовершенствованиям, связанным с включением и повторным включением таких горелок, а также с их предварительными испытаниями, чисткой и эффективной и экономичной эксплуатацией
Наверх