Гетероструктура на основе арсенида - антимонида - висмутида индия и способ ее получения

 

Использование: в технологии полупроводниковых материалов. Сущность изобретения: гетероструктура на основе арсенида-антимонида-висмутида индия включает эпитаксильный слой, содержащий индий, мышьяк, сурьму и висмут при следующем соотношении компонентов, ат.%: индий 50, сурьма 44 - 46, висмут 0,3 - 0,5 и мышьяк - остальное, и подложку антимонида индия. Новым является наличие второго эпитаксиального слоя, содержащего те же компоненты при следующем их соотношении, ат.%: индий 50, сурьма 41 - 43, висмут 0,3 - 0,5 и мышьяк - остальное. Способ осуществляют путем растворения навесок арсенида и антимонида индия в металле-растворителе - висмуте при температуре насыщения. Затем проводят гомогенизацию раствора-расплава при температуре 480°С, охлаждение системы с постоянной скоростью. Приводят раствор-расплав в контакт с подложкой при температуре ниже температуры насыщения на 12 - 20°С и удаляют раствор-расплав с поверхности эпитаксиального слоя после завершения наращивания слоя заданной толщины. Далее в едином технологическом цикле с той же последовательностью операций наращивают второй эпитаксиальный слой, при этом контакт раствора-расплава с поверхностью первого эпитаксиального слоя проводят при температуре ниже температуры насыщения на 7 - 18°С. 2 с.п. ф-лы, 3 табл.

Изобретение относится к технологии полупроводниковых материалов и может быть использовано для получения методом жидкофазной эпитаксии (ЖФЭ) двухслойных гетероструктур: арсенид-антимонид-висмутид индия/антимонид индия (InAs1-x-ySbxBiy/InAs1-x-ySbxBiy/InSb) для фотоприемных устройств ИК-диапазона, соответствующего ширине запрещенной зоны (Еg) эпитаксиального слоя (ЭС) менее 0,165 эВ при 77К (или положению края собственного оптического поглощения с>7,5 мкм при 77К).

Известны двухслойные гетероструктуры InAs1-xSbx/InAs1-xSbx/InSb [1] полученные методом ЖФЭ из индиевых растворов-расплавов. Использован известный прием выращивания буферного слоя для уменьшения рассогласования периодов кристаллической решетки элементов гетероструктуры. Достигнуты значения Еg 0,17 эВ при 77К (что соответствует c< 7,3 мкм при 77К).

Наиболее близким к изобретению техническим решением являются гетероструктуры InAs1-x-ySbxBiy/InSb (x 0,88), полученные методом ЖФЭ из растворов-расплавов, содержащих в качестве растворителя висмут [2] Введение висмута в состав ЭС позволило добиться заметного уменьшения ширины запрещенной зоны ЭС.

Процесс ЖФЭ включает гомогенизацию раствора-расплава, приготовленного ранее путем сплавления навесок арсенида индия, антимонида индия и висмута при температуре синтеза 650о С, охлаждение системы с постоянной скоростью, приведение раствора-расплава в контакт с подложкой при температуре ниже температуры насыщения на 5-20о С, удаление раствора-расплава с поверхности ЭС после завершения наращивания ЭС заданной толщины.

Недостатком данных гетероструктур и способа их получения является трудность получения гетероструктур с х > 0,88, что ограничивает значения Еg величиной 0,17 эВ при 77К. Для дальнейшего уменьшения Еgнеобходимо повышение содержания мышьяка в ЭС и, следовательно, увеличение концентрации мышьяка в растворе-расплаве. Это приводит к увеличению степени термодинамической неравновесности между подложкой антимонида индия и четырехкомпонентным раствором-расплавом и необходимости использования большего исходного переохлаждения раствора-расплава (То) для подавления подрастворения подложки.

Использование изобретения приведет к уменьшению ширины запрещенной зоны материала ЭС, так как гетероструктура содержит два последовательно наращиваемые ЭС следующего состава, ат. первый слой индий 50, сурьма 44-46, висмут 0,3-0,5 и мышьяк остальное; второй слой индий 50, сурьма 41-43, висмут 0,3-0,5 и мышьяк остальное. При этом выращивание второго ЭС проводят при температуре 400-445о С.

Наличие буферного (первого) слоя уменьшает термодинамическую неравновесность между подложкой и раствором-расплавом, что позволяет уменьшить величину исходного переохлаждения, необходимого для предотвращения подрастворения подложки. При повышении температуры контакта (Тk) раствора-расплава с подложкой снижается скорость роста ЭС, что приводит к увеличению эффективного коэффициента распределения мышьяка и соответственно к увеличению его концентрации в ЭС. Таким образом, уменьшение Еg достигается за счет возможности выращивания ЭС с большим содержанием мышьяка.

П р и м е р 1. Для приготовления раствора-расплава с температурой ликвидуса Тл(1) 462о С, равной температуре насыщения, брали навески InSb, InAs и Bi в суммарном количестве 10 г, исходя из состава жидкой фазы (в ат.): In 30,17. Sb 30, As 0,17, Bi 39,66. Для приготовления раствора-расплава с температурой ликвидуса Тл(2) 455о С, равной температуре насыщения, брали навески InSb, InAS и Bi в суммарном количестве 10 г, исходя из состава жидкой фазы (в ат.): In 27,17, Sb 27, As 0,17, Bi 45,66. Компоненты шихты сплавляли в графитовом контейнере при Т 650о С в течение 1 ч. Шихту и подложку InSb(III)В загружали в графитовый контейнер пенального типа и нагревали до температуры 480о С. После выдержки в течение 1 ч при этой температуре, необходимой для гомогенизации раствора-расплава, производили охлаждение со скоростью Vохл 1оС/мин до температуры контакта Тк(1) 442о С (при этом величина переохлаждения первого раствора-расплава Т Тл(1) Тк(1) составила 20о С). При Тк(1) первый раствор-расплав приводили в контакт с подложкой на время t 60 с. После завершения наращивания ЭС раствор-расплав удаляли с поверхности ЭС, после чего продолжали охлаждение системы с заданной скоростью до Тк(2) 437о С (при этом величина переохлаждения второго раствора-расплава Т Тл(2) Тк(2)составила 18о С). При Тк(2) составила 18о С). Пpи Тк(2) второй раствор-расплав приводили в контакт с подложкой на время t 300 с. После завершения наращивания ЭС раствор-расплав удаляли с поверхности ЭС, после чего печь выключали.

Толщину ЭС определяли с помощью оптического микроскопа на сколе гетероструктуры после предварительного выявления гетерограницы путем селективного химического травления. Концентрацию мышьяка в ЭС измеряли методом локального рентгеноспектрального анализа. Ширину запрещенной зоны определяли по положению края собственного оптического поглощения c В приведенном примере толщина первого ЭС h1 8 мкм, толщина второго ЭС h2= 6 мкм, х1 0,88, х2 0,83, c 8,1 мкм, Еg= 0,153 эВ при 77К.

Другие примеры реализации предлагаемого технического решения приведены в табл.1.

Для сравнения в табл.2 приведены результаты, полученные по способу-прототипу.

Как видно из примеров, приведенных в табл.1 и 2, ЭС InAs1-x-ySbxBiy, полученные предлагаемым способом, характеризуются значительно меньшей шириной запрещенной зоны в сравнении с ЭС, полученными по способу-прототипу.

Попытки выращивать ЭС указанного состава непосредственно на подложках InSb не приводят к цели, так как для подавления подрастворения подложки требуется переохлаждение раствора-расплава на величину 25-35оС, по достижении которой начинается гомогенная кристаллизация в жидкой фазе и происходит неконтролируемое изменение состава и толщины ЭС.

Примеры недостижения цели при выходе за указанные ограничительные параметры процесса приведены в табл.3.

Как видно из табл.3, ЖФЭ из растворов-расплавов, успешно использованных при росте ЭС по предлагаемому способу, не приводит к достижению цели при росте непосредственно на подложках InSb (примеры 1-3). Выход за пределы указанных величин переохлаждения раствора-расплава (примеры 4,5) также не приводит к положительным результатам по значениям Еg.

Таким образом, предлагаемое техническое решение позволяет по сравнению с прототипом добиться заметного уменьшения ширины запрещенной зоны ЭС. Достижение этого технического результата расширяет возможности использования гетероструктур на основе узкозонных полупроводниковых материалов типа AIIIBV в приборах инфракрасной техники (фотоприемниках, оптических фильтрах и др.). Технология получения предлагаемых гетероструктур существенно не меняется по сравнению с технологией получения известных гетероструктур и не требует создания специального оборудования.

Формула изобретения

1. Гетероструктура на основе арсенида антимонида висмутида индия, содержащая подложку из антимонида индия и эпитаксиальный слой из индия, мышьяка, сурьмы и висмута при следующем соотношении компонентов, ат.

Индий 50 Сурьма 44 46 Висмут 0,3 0,5 Мышьяк Остальное отличающаяся тем, что на первом эпитаксиальном слое расположен второй эпитаксиальный слой при следующем соотношении компонентов, ат.

Индий 50 Сурьма 41 43 Висмут 0,3 0,5 Мышьяк Остальное
2. Способ получения гетероструктуры на основе арсенида антимонида - висмутида индия методом жидкофазной эпитаксии, включающий приготовление раствора-расплава путем растворения навесок арсенида и антимонида индия в металле-растворителе висмуте при температуре насыщения 415 465oС, гомогенизацию раствора-расплава при 450 480oС, охлаждение системы с постоянной скоростью, приведение раствора-расплава в контакт с подложкой при температуре ниже температуры насыщения на 12 20oС, удаление раствора-расплава с поверхности эпитаксиального слоя после завершения наращивания слоя заданной толщины, отличающийся тем, что после удаления раствора-расплава дополнительно проводят наращивание второго эпитаксиального слоя на поверхности первого эпитаксиального слоя в едином технологическом цикле с той же последовательностью операций, при этом температуру насыщения выбирают в том же температурном интервале, а контакт раствора-расплава с поверхностью первого эпитаксиального слоя проводят при температуре ниже температуры насыщения на 7 18oС.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к полупроводниковой технологии и может быть использовано при получении приборных структур для микро- и оптоэлектроники с применением жидкофазной эпитаксии

Изобретение относится к полупроводниковой технологии, в частности к созданию карбидкремниевых р-п-структур, которые используют для создания высокотемпературных приборов: выпрямительных диодов, стабилитронов, полевых транзисторов с управляющим р-п-переходом, и позволяет повысить выход годных структур

Изобретение относится к технологии полупроводников, в частности к технологии выращивания полупроводниковых гетероструктур методом жидкофазной эпитаксии, и может быть использовано для получения квантово-размерных периодических структур с супертонкими активными слоями с целью создания на их основе, например, температурно-стабильных лазеров, быстродействующих транзисторов и т.д

Изобретение относится к полупроводниковой технологии и может быть использовано при получении приборных структур для микро- и оптоэлектроники методом жидкостной эпитаксии

Изобретение относится к металлургии полупроводников, а именно к получению однои многослойных полупроводниковых эпитаксиальных структур для полупроводниковой промышленности, и позволяет улучшить морфологию выращиваемых структур, получить локальную эпитаксию, а также получить резкие переходы между выращиваемыми слоями
Изобретение относится к технологии полупроводниковых материалов и может быть использовано при получении приборных структур для микро- и оптоэлектроники с применением жидкостной эпитаксии
Изобретение относится к технологии полупроводниковых структур, а именно к технологии формирования металлических зон для зонной перекристаллизации градиентом температуры, и может найти применение в технологии изготовления фотопреобразователей

Изобретение относится к технологии полупроводников и может быть использовано для получения многослойных эпитаксиальных структур полупроводниковых материалов методом жидкофазной эпитаксии

Изобретение относится к прикладной физике и микроэлектронике и может быть использовано при получении моно- и мультислойных структур низкомолекулярных и высокомолекулярных соединений, преимущественно ограниченно растворимого амфифильного вещества (ОРАФВ) из жидкой фазы

Изобретение относится к способам изготовления полупроводниковых структур из соединений А3В 5 методами эпитаксии
Изобретение относится к полупроводниковой технологии и может быть использовано при производстве полупроводниковых приборов и интегральных схем

Изобретение относится к области силовой микроэлектронной техники, а более конкретно, к способам изготовления полупроводниковых p-i-n структур из соединений A3B5 методами жидкостной эпитаксии

Изобретение относится к электронной технике, в частности к устройствам для получения многослойных полупроводниковых гетероструктур. Устройство содержит корпус 1 с крышкой 2, контейнер 3 с емкостями для исходных расплавов, снабженный поршнями 4, многосекционный держатель 14 подложек, камеру роста 5 и каналы для подачи и вывода расплавов. Контейнер 3 с емкостями расположен под многосекционным держателем 14 подложек. Крышка 2 снабжена выступами для удаления излишков расплава. Устройство содержит дополнительные емкости 7 для части используемых расплавов, установленные над контейнером 3, каждая из которых снабжена крышкой 8 с грузом и отверстием с возможностью слива расплава в располагающийся ниже основной контейнер 3. Технический результат изобретения состоит в обеспечении подавления нежелательного взаимодействия примесей в разных ростовых расплавах между собой через газовую фазу, что приводит к повышению технических или электрофизических характеристик получаемых структур. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к полупроводниковой технологии, в частности к установкам для выращивания наногетероэпитаксиальных структур методом жидкофазной эпитаксии, и может быть использовано при производстве материалов для полупроводниковых приборов. Изобретение позволяет увеличить производительность установки, улучшить многократное позиционирование подложки при увеличении ее диаметра, обеспечить эпитаксиальное наращивание не только нанослоев, массивов квантовых точек, но и омических контактов различных конфигураций за счет выполнения реактора в виде «креста», внутри горизонтальной части которого, вдоль его оси, перемещается кассета с расположенными на ней емкостями с различными растворами-расплавами, контейнерами с подложками и контейнерами для складирования наноструктур для их поочередного совмещения с цилиндром. В вертикальной части реактора, через центр нижней крышки реактора, проходит шток, перемещающий контейнеры из кассеты к нижнему основанию цилиндра для закрепления подложек при создании вакуума внутри цилиндра, с последующим отделением наноструктур в контейнер при поступлении водорода вовнутрь цилиндра. Перемещение штоком из кассеты емкостей приводит к созданию ростовой камеры, образованной рабочей поверхностью подложки, внутренней поверхностью нижнего основания цилиндра и поверхностью насыщенного раствора-расплава, проходящего через отверстия плавающей пластины заданной формы с различной конфигурацией отверстий. Через центр верхней крышки реактора проходит шток внутри цилиндра, перемещающий теплоноситель от теплоемкости с постоянной температурой и теплоемкости в виде кольца с индукционным импульсным нагревом до тыльной поверхности подложки. 1 ил.

Изобретение относится к области силовой микроэлектронной техники, а более конкретно к способам изготовления полупроводниковых p-i-n структур из соединений А3В5 методами жидкостной эпитаксии. В способе единовременного получения p-i-n структуры GaAs, имеющей р, i и n области в одном эпитаксиальном слое, в ходе процесса эпитаксии при выращивании высокоомной i-области, ограниченной с двух сторон слаболегированными р-- и n--областями, предложено использовать разработанный режим охлаждения, позволяющий без дополнительного увеличения ростового зазора между подложками сформировать необходимый профиль распределения концентрации носителей в базовой области структуры. Технический результат, достигаемый при реализации разработанного способа, состоит в снижении прямого падения напряжения GaAs p-i-n структуры при одновременном уменьшении величины времени обратного восстановления. 1 табл., 1 ил.

Изобретение относится к электронной технике, в частности к способам получения методом жидкофазной эпитаксии многослойных полупроводниковых структур. При реализации способа используют герметичную ростовую камеру с раствором-расплавом, в которой закрепляют попарно группу подложек. При этом применяют стационарную камеру роста с переменной шириной ростового канала по высоте с определенным углом отклонения от вертикали ϕ. Технический результат, достигаемый при реализации разработанного способа, состоит в обеспечении компенсации нежелательного массопереноса основного кристаллообразующего компонента - мышьяка в вертикальном направлении, что приводит к повышению однородности толщины эпитаксиальных слоев по площади структуры и, соответственно, основных технических или электрофизических характеристик получаемых эпитаксиальных структур. 1 з.п. ф-лы, 2 ил., 2 пр., 2 табл.
Наверх