Способ экологически чистого процесса нитроцементации металлических изделий

 

Изобретение относится к нитроцементации и может быть использовано, например, в нефтехимии, металлургии, машиностроении и других отраслях промышленности. Способ экологически чистого процесса нитроцементации металлических изделий, при котором производят эндотермическую контролируемую атмосферу путем каталитической конверсии углеводородного газа окислителем (воздухом) и подают ее в пространство нитроцементации с добавками углеводородного газа CnH2n+2 и аммиака в количестве , соответственно, (1 - 5)/100n и (1 - 6)/100n объема подаваемой атмосферы, причем отработанную атмосферу отводят из пространства нитроцементации по герметичному тракту и вместе с дополнительными количеством углеводородного газа и окислителя возвращают на конверсию, компенсируя увеличение содержания водорода в отработанной атмосфере заменой части окислителя диоксидом углерода в количестве (0,8-1,1)nN объема добавки углеводородного газа и (1,3-1,7)nN/(n+1) добавки аммиака, где n - коэффициент возврата, выраженный отношением объемов атмосферы, отводимой из пространства нитроцементации и поданной в него.

Изобретение относится к нитроцементации и может быть использовано, например, в нефтехимии, металлургии, машиностроении и других отраслях промышленности.

Известен способ нитроцементации изделий, при котором производят атмосферу на базе газа-носителя с добавкой углеводородов и аммиака [1] Недостатками известного способа являются большое выделение оксида углерода в окружающую среду и большой расход эндотермической атмосферы.

Наиболее близким к заявляемому является способ экологически чистого процесса нитроцементации металлических изделий, включающий создание эндотермической контролируемой атмосферы, подачу ее в печь, удаление отработанных газов из печи и возвращение их в пространство нитроцементации.

Недостатками известного способа являются загрязнение окружающей среды в цеху и вне его, большой расход эндотермической атмосферы и низкое качество процесса нитроцементации.

Цель изобретения повышение экологичности процесса за счет сокращения вредных промышленных выбросов в атмосферу, сокращение расхода эндогаза за счет рециркуляции атмосферы в системе печь-генератор, повышение качества процесса нитроцементации за счет увеличения глубины науглероживания и качества обрабатываемых изделий за счет улучшения равномерности распределения углерода по глубине диффузионного слоя.

В заявляемом способе экологически чистого процесса нитроцементации металлических изделий, включающем создание эндотермической контролируемой атмосферы, подачу ее в печь, удаление отработанных газов из печи и возвращение их в пространство нитроцементации, отработанную атмосферу отводят из пространства нитроцементации по герметичному тракту, добавляют углеводородный газ типа CnH2n+2 и аммиак в количестве, соответственно, (1-5)/100n и (1-6)/100n объема подаваемой атмосферы и вместе с окислителем возвращают на конверсию, компенсируя увеличение содержания водорода в отработанной атмосфере заменой части окислителя диоксидом углерода в количестве (0,8-1,1)nW объема добавки углеводородного газа и (1,3-1,7)nW/(n+1) добавки аммиака, где W коэффициент возврата, выраженный отношением объемов атмосферы, отводимой из пространства нитроцементации и поданной в него.

Способ экологически чистого процесса нитроцементации металлических изделий реализуют следующим образом.

Углеводородный газ и воздух в соотношении 0,25-0,3, обеспечивающем состав готовой эндотермической контроли- руемой атмосферы (например, 20% СО, 40% Н2, 40% азота), поступает в смеситель. Образовавшаяся смесь компрессором нагнетается в реторту эндогенератора, заполненную катализатором, и нагретую до 1030-1050оС. В слое катализатора протекает реакция конверсии углеводородного газа окислителем с образованием на выходе эндотермической контролируемой атмосферы указанного выше состава. Эта атмосфера по герметичному трубопроводу подается в рабочее пространство печи, куда одновременно поступают добавки углеводородного газа СnH2n+2 в количестве е (1-5)/100n и аммиака m (1-6)/100n объема эндотермической атмосферы.

В рабочем пространстве печи происходит взаимодействие металлических изделий с нитроцементационной атмосферой, образующейся при взаимодействии эндотермической атмосферы с добавками углеводо- родного газа и аммиака. В результате взаимодействия на поверхности металлических изделий выделяются активные углерод и азот, которые при температурах нитроцементации 840 870оС диффундируют вглубь металла с образованием слоя нитроцементации. Параметры слоя определяются углеродным потенциалом нитроцементационной атмосферы, добавкой аммиака, содержанием в ней активных составляющих СО и Н2 и продолжительностью процесса нитроцементации. При одном и том же углеродном потенциале и одинаковых добавках аммиака скорость насыщения будет более высокой при равном количестве СО и Н2 и более высоком их общем содержании.

Отработанная атмосфера покидает печь через гидрозатвор, обеспечивающий поддержание в рабочем пространстве требуемого избыточного давления. Барботируя через воду в гидрозатворе отходящая из печи атмосфера очищается от взвешенных примесей и из верхней части гидрозатвора по герметичному трубопроводу подается в накопитель газа.

Из накопителя газа отработанная атмосфера поступает во всасывающий патрубок компрессора вместе с дополнительным количеством углеводородного газа и воздуха. Для компенсации повышения содержания водорода вследствие разложения (диссоциации) в печи добавок углеводородного газа и аммиака часть воздуха, подаваемого во всасывающий патрубок компрессора, заменяют диоксидом углерода в количестве (0,8-1,1)nW объема добавок углеводородного газа и (1,3-1,7) х nW/n+1 аммиака, подаваемых в печь. На катализаторе реторты, куда подается смесь отработанной атмосферы, дополнительное количество углеводородного газа и воздуха, а также диоксид углерода, происходит реакция конверсии углеводородного газа воздухом и диоксидом углерода CnH2n+2+ (O2+3,76N2)=CO+ H2+1,88N2 (1) CnH2n+2+ CO2 2CO+ H2 (2) Благодаря реакции (2) атмосфера, покидающая слой катализатора, содержит первоначальное соотношение оксида углерода и водорода при несколько увеличенном их общем содержании. Таким образом, в рабочее пространство печи поступает контролируемая атмосфера с улучшенными нитроцементационными свойствами.

Многократное повторение описанного выше цикла работы агрегата позволяет значительно повысить содержание активных компонентов атмосферы СО и Н2 при поддержании требуемого соотношения между ними.

Экологичность процесса определяется согласно следующему соотношению: Эпроц= м3 на процесс, где Vэн расход эндогаза, м3/ч; w коэффициент возврата, б/р; н время нового процесса, ч; c время старого процесса, ч; Ссо концентрация СО в эндогазе,
Эпроц сокращение выбросов СО, м3 на процесс.

Заявленное решение было проверено на экспериментальном стенде, содержащем эндотермическую установку ЭН-16, соединенную герметичным трубопроводом с шахтной печью СШЦМ-6.20/9. Трубопровод, отводящий из печи отработанную атмосферу, соединен с патрубком подвода исходных продуктов в установку ЭН-16. Кроме того патрубок соединен с патрубком подвода диоксида углерода. Печь СШЦМ-6.20/9 оборудована патрубками для подачи добавок углеводородного газа и аммиака.

Определение состава отработанной атмосферы проводили непрерывно газоанализаторами: ГИАМ-5 0-1,0 об. СО2 АГ-0012 0-100 об. Н2 ГИАМ-14 0-100 об. СО
Дополнительно хроматографом "ГАЗОХРОМ 3101" проводили определение содержания СО2, Н2, СО, СН4 и О2.

Ротаметрами типа РМ, протарированными для измерения расхода соответствующего газа, определяли расход поступающей в печь атмосферы, добавок углеводородного газа и аммиака, а также расходы окислителей воздуха и диоксида углерода и углеводородного газа, подаваемого в установку ЭН-16.

Установка ЭН-16 снабжена серийным оборудованием для регулирования состава получаемого эндогаза и газодувкой с внешним байпасом для снижения производительности до любого требуемого значения, не опасаясь перегрева газодувки.

Регулирование процесса нитроцементации в печи СШЦМ-6.20/9 производили вручную при помощи указанных газоанализаторов и устройства для определения углеродного потенциала методом фольги.

Эксперименты проводили в режиме промышленной нитроцементации изделий из стали 20Х при 850-860оС. Продолжительность обработки составила 6,2 ч. Значения углеродного потенциала на стадии насыщения во всех экспериментах составили 1,0-1,1% на стадии диффузии 0,7-0,8% за счет снижения в течение 0,5 ч перед выгрузкой садки общего расхода атмосферы при сохранении существовавшей пропорции между эндогазом и добавками.

Источником углеводородного газа являлся магистральный природный газ и пропан-бутановая смесь из подземной емкости сжиженного газа, оборудованной испарителем, источником аммиака жидкий аммиак в баллонах.

Глубину диффузионного слоя определяли металлографически на поперечных срезах образцов, а распределение концентрации углерода посредством послойного химического анализа. Содержание азота в слое не определяли.

Pавномерность распределения углерода по глубине оценивали соотношением:
100% где С* содержание углерода в поверхностном слое;
С1 содержание углерода на глубине, равной 1/3 от поверхности;
глубина диффузионного слоя.

Использование предложенного решения позволяет повысить экологичность процесса нитроцементации за счет сокращения вредных выбросов в атмосферу на 960 м3 СО в год на 1 м3 эндогаза при производительности эндогенератора 125 м3/ч, что составит 120000 м3 СО в год, сократить, в среднем, на 80% расход эндогаза за счет рециркуляции атмосферы в системе печь-генератор, повысить качество процесса нитроцементации за счет увеличения в 1,5 раза глубины науглероживания и качество обрабатываемых изделий за счет более равномерного распределения углерода по глубине диффузионного слоя в 1,3 1,5 раза.

Впервые в отечественной и зарубежной практике достигнута возможность многократного использования нитроцементационной контролируемой атмосферы при одновременном улучшении качества процесса насыщения.


Формула изобретения

СПОСОБ ЭКОЛОГИЧЕСКИ ЧИСТОГО ПРОЦЕССА НИТРОЦЕМЕНТАЦИИ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ, включающий создание эндотермической контролируемой атмосферы, подачу ее в печь, удаление отработанных газов из печи и возвращение их в пространство нитроцементации, отличающийся тем, что отработанную атмосферу отводят из пространства нитроцементации по герметичному тракту, добавляют углеводородный газ типа CnH2n+2 и аммиак в количестве соответственно (1 5) / 100 n и (1 6) 100 n объема подаваемой атмосферы и вместе с окислителем возвращают на конверсию, компенсируя увеличение содержания водорода в отработанной атмосфере заменой части окислителя диоксидом углерода в количестве (0,8 1,1) n N объема добавки углеводородного газа и (1,3 1,7) n N / (n + 1) дабавки аммиака, где N коэффициент возврата, выраженный отношением объемов атмосферы, отводимой из пространства нитроцементации и поданной в него.



 

Похожие патенты:

Изобретение относится к области металлургии , в частности к химико-термической обработке резьбовых крепежных деталей, применяемых в конструкциях магнитопроводов и узлов, работающих в вакууме при теплосменах от криогенных температур до температур 300-500° С

Изобретение относится к материаловедению, в частности к химико-термической обработке сплавов, а именно к диффузионному насыщению металлической поверхности ив твердом состоянии элементами, получаемыми в парогазовых смесях, и может быть использовано в машиностроении

Изобретение относится к порошковой металлургии и может быть применено для изготовления изделий из жеЯезных порошков , работающих в условиях низкого и среднего нагружения

Изобретение относится к металлургии, в частности к химико-термической обработке режущего инструмента - мелкоразмерных сверл диаметром не более 0,6 мм

Изобретение относится к энергосберегающим способам изготовления деталей из углеродистых и легированных сталей с высокой эксплуатационной стойкостью к коррозии и износу и может быть использовано в аграрной, металлургической, машиностроительной и других отраслях промышленности при металлообработке
Изобретение относится к материалам с эффектом памяти формы с модифицированной поверхностью, которые могут быть использованы в качестве имплантатов в медицине, в качестве температурных датчиков, термочувствительных и исполнительных элементов и конструкций в приборостроении, радиотехнике

Изобретение относится к металлургии и может быть использовано для защиты конструкционных деталей из металлов или их сплавов от расплавленного химически активного металла

Изобретение относится к области создания новых композиционных материалов на основе пористых металлов и оксидной композиции и может быть использовано для приготовления металлокерамических мембран барометрических и мембранно-каталитических процессов, в частности, проявляющих каталитическую активность в превращении метанола до формальдегида
Изобретение относится к способу упрочнения деталей, работающих в условиях абразивного изнашивания. Осуществляют вибродуговую наплавку износостойкого материала на поверхность детали с использованием графитового электрода. В качестве наплавляемого материала используют металлокерамический композит, содержащий консолидированные сплавы карбидов, боридов, нитридов и армирующие керамические сверхтвердые включения из карбида бора, корунда и карбокорунда. Одновременно с наплавкой выполняют легирование упрочняемой поверхности бором, азотом и углеродом. После наплавки производят нагрев детали в печи до температуры 750…770°С и с выдержкой 1,5…2 мин. Затем выполняют закалку и низкий отпуск с нагревом детали до 150…160°С и выдержкой в течение 8…10 мин. В результате увеличивается в среднем в 2 раза ударная вязкость и в 3 раза - износостойкость детали в условиях абразивного изнашивания. 1 табл.
Наверх