Пьезоэлектрический вибропреобразователь

 

Изобретение относится к измерительной технике, в частности к устройствам для виброизмерений, и может быть использовано при диагностике машин и механизмов, а также при диагностике нарушений сплошности ферменных конструкций при эксплуатации нефте-, газопроводных и других сооружений. Вибропреобразователь содержит последовательно соединенные пьезодатчик 1, усилитель 2 напряжения, интегратор 3, а также последовательно соединенные тензодатчик 4, усилитель 5 с регулируемым коэффициентом усиления и перестраиваемый фазовращатель 6. Выход фазовращателя подключен к первому входу сумматора 7, второй вход которого соединен с выходом интегратора 3. Выход сумматора 7 является выходом вибропреобразователя. Пьезодатчик и тензодатчик установлены на поверхности контролируемого объекта вплотную друг к другу. Введение в вибропреобразователь тензодатчика, перестраиваемого фазовращателя и интегратора позволяет получить на первом и втором входах сумматора напряжения, пропорциональные соответственно тензонапряжению и виброскорости. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для виброизмерений, и может быть использовано при диагностике машин и механизмов, измерении вибрационных характеристик частей механических систем и установок в машиностроении, а также при диагностике нарушений сплошности ферменных конструкций при эксплуатации нефте-, газопроводных сооружений, нарушений сплошности трубопроводов и испытании качества соединения стыковочных узлов в зоне перекачивающих насосных агрегатов для испытания отклонений в режиме работы самих насосов.

Известен пьезоэлектрический вибропреобразователь [1] содержащий расположенный на поверхности контролируемого объекта пьезодатчик, подключенный выходом к усилителю напряжения.

Известный вибропреобразователь воспринимает все виброколебания, воздействующие на контролируемую поверхность, и не обеспечивает избирательности в присутствии помех от мешающих виброакустических источников.

Наиболее близким по конструктивным признакам, выбранным за прототип, является пьезоэлектрический вибропреобразователь [2] содержащий установленный на поверхности контролируемого объекта пьезодатчик, состоящий из двух пьезопластин с противоположными направлениями поляризации и подключенный к усилителю напряжения, выход которого соединен с первым входом сумматора. Для повышения температурной стабильности вибропреобразователя и тем самым повышения точности измерений последний содержит усилитель с регулируемым коэффициентом усиления, входом соединенный с вторым выходом пьезодатчика, выходом с вторым входом сумматора. В качестве усилителя с регулируемым коэффициентом усиления использован инвертирующий усилитель заряда, выходной сигнал которого изменяется с изменением температуры в другую сторону по отношению к изменению выходного сигнала усилителя напряжения.

Так как данный вибропреобразователь воспринимает все виброколебания, воздействующие на контролируемый объект, то он не обеспечивает пространственной избирательности в присутствии помех от мешающих виброакустических источников. Так, при измерении вибрационных характеристик отдельного источника вибрации, например, при диагностике отдельных узлов сложного агрегата, известное устройство реагирует на все колебания, являющиеся результатом воздействия всех источников, и поэтому может не обеспечить выделение полезного информационного сигнала на фоне остальных вследствие малого соотношения сигнал/шум.

Кроме того, данный вибропреобразователь имеет ограниченные функциональные возможности, так как не может определить появление неоднородности или дефекта в контролируемом объекте в процессе эксплуатации вследствие того, что реагирует на все источники вибраций, в том числе и дефекты, и не обеспечивает пространственное разделение.

Поставленные задачи в изобретении решаются тем, что в пьезоэлектрический вибропреобразователь, содержащий пьезодатчик, подключенный к усилителю напряжения, а также усилитель с регулируемым коэффициентом усиления и сумматор, введены тензодатчик, перестраиваемый фазовращатель и интегратор, при этом тензодатчик установлен на поверхность контролируемого объекта вплотную к пьезодатчику и подключен через последовательно соединенные усилитель с регулируемым коэффициентом усиления и перестраиваемый фазовращатель к первому входу сумматора, с вторым входом которого через интегратор соединен выход усилителя напряжения.

Введение в предлагаемом вибропреобразователе тензодатчика, перестраиваемого фазовращателя и интегратора позволяет получить на первом и втором входах сумматора напряжения, пропорциональные соответственно тензонапряжению и виброскорости.

Расположение пьезодатчика и вибропреобразователя на поверхности контролируемого объекта вплотную друг к другу обеспечивает измерение виброскорости и тензонапряжения в одной зоне, ближней или дальней по отношению расположения источника вибрации.

Известно [3] что соотношение амплитуд и фаз между тензонапряжением и виброскоростью в дальней и ближней зонах измерения различно. В результате за счет этих различий путем настройки коэффициента усиления регулируемого усилителя и фазы перестраиваемого фазовращателя, а следовательно, и амплитуды и фазы напряжения на первом входе сумматора, реализуется компенсация помех, создаваемых мешающими дальними (или ближними) источниками вибрации и выделяется сигнал от полезных ближних (или дальних) источников, что обеспечивает пространственную избирательность вибропреобразователя и повышает в выходном сигнале отношение сигнал/шум.

Кроме того, возможность пространственного разделения вибропреобразователя источников вибрации позволяет использовать его для определения появления вблизи точки измерения неоднородности или дефекта в контролируемом объекте в процессе эксплуатации путем настройки коэффициента усиления регулируемого усилителя и фазы перестраиваемого фазовращателя на подавление вибросигналов от удаленных источников.

На чертеже изображена структурная схема предлагаемого вибропреобразователя.

Вибропреобразователь содержит последовательно соединенные пьезодатчик 1, усилитель 2 напряжения, интегратор 3, а также последовательно соединенные тензодатчик 4, усилитель 5 с регулируемым коэффициентом усиления и перестраиваемый фазовращатель 6. Выход фазовращателя 6 подключен к первому входу сумматора 7, второй вход которого соединен с выходом интегратора 3. Выход сумматора 7 является выходом вибропреобразователя.

Пьезодатчик 1 и тензодатчик 4 установлены на поверхности контролируемого объекта вплотную друг к другу.

В качестве усилителя 5 использован усилитель напряжения с регулируемым коэффициентом усиления.

Вибропреобразователь работает следующим образом.

На пьезодатчик 1 воздействует виброполе в виде колебательных напряжений. Пьезодатчик преобразует величину виброускорения опорной поверхности контролируемого объекта в электрический сигнал, пропорциональный ускорению. Этот сигнал усиливается усилителем 2 напряжения и с помощью интегратора 3 преобразуется в сигнал Uv, пропорциональный колебательной скорости vу опорной поверхности.

Одновременно виброколебания воздействуют на тензодатчик 4, который преобразует их в электрический сигнал, пропорциональный механическому напряжению ху Этот сигнал усиливается усилителем 5. В результате на первый и второй входы сумматора 7 поступает соответственно сигнал U пропорциональный механическому напряжению ху, и пропорциональный колебательной скорости vy опорной поверхности.

Известно [3] что виброколебания различных источников дальней и ближней зон по отношению к точке измерения представляют собой в основном изгибные колебания и характеризуются различным волновым механическим импедансом Z, определяемым отношением тензонапряжения хук виброскорости vy (где Х продольная координата; у вертикальная, нормально ориентированная к поверхности контролируемого объекта координата). При этом дальняя зона начинается с расстояния между источником вибрации и точкой измерения Lо> где минимальная длина волны излучения измеряемого источника вибрации и характеризуется постоянным волновым механическим импедансом для всех > Lо.

Так, в случае, когда контролируемый объект можно представить в виде тонкой бесконечно протяженной пластины, частным случаем которой можно рассматривать трубопровод, для источников дальней зоны виброскорость vуи тензонапряжение находятся в фазе, и волновой механический импеданс является реальной величиной, определяемой по формуле Z9 h3/2 где частота вибрационных колебаний; плотность; h толщина пластины; E1 где E' модуль Юнга; коэффициент Пуассона.

Для источников ближней зоны отношение тензонапряжения ху к виброскорости vу также является реальной величиной (т.е. ху и vyнаходятся в фазе), но определяется по другой формуле: Zбл 16h; т.е. волновой механический импеданс зависит от типа источника вибраций и характеристик канала распространения виброакустического поля, в том числе и от взаимного расположения вибродатчиков (пьезо- и тензодатчика) и источника вибрации.

В результате величины комплексных амплитуд напряжений U и Uv на входах сумматоров зависят от взаимного расположения вибродатчиков и источника вибрации.

Так как = = где коэффициент преобразования вибродатчика; коэффициент преобразования пьезодатчика; комплексный коэффициент передачи усилителя с регулируемым коэффициентом усиления с фазовращателем;
комплексный коэффициент передачи усилителя напряжения с интегратором;
, - комплексные значения тензонапряжения и виброскорости соответственно, то на выходе сумматора имеем
=+=K+
При равенстве нулю выходного напряжения сумматора
= -, т.е. Z.

В результате при установке коэффициента передачи усилителя 5 с регулируемым коэффициентом усиления с фазовращателем 6, равным
= Zд h3/2 компенсируется выходной сигнал, обусловленный воздействием полей от источника дальней зоны, а при установке коэффициента передачи равным
= Zбл 16h компенсируется выходной сигнал, обусловленный воздействием полей от источника ближней зоны.

При результирующем воздействии полей от источников в дальней и ближней зоне и при настройке вибропреобразователя с помощью регулируемых усилителя 5 и фазовращателя 6 на подавление помех дальней зоны составляющие выходного сигнала, обусловленные воздействием полей от всех источников дальней зоны, равны нулю, компенсация сигналов, обусловленных воздействием полей от источников ближней зоны, не происходит.

При настройке вибропреобразователя на подавление вибросигналов от источников ближней зоны на выходе вибропреобразователя имеем сигнал от полезного источника, расположенного в дальней зоне.

В частном случае, когда коэффициенты преобразования и и коэффициент передачи имеют реальные значения , и Ко, для компенсации источников дальней и ближней зоны коэффициент усиления усилителя 5 К1 устанавливают соответственно
K1 h3/2
или
K1 16h, а фазу перестраиваемого фазовращателя 6 устанавливают 180о.

Полученный на выходе вибропреобразователя сигнал определяет спектральные и временные характеристики сигнала от исследуемого источника вибраций.

Таким образом, предлагаемый вибропреобразователь обеспечивает пространственную избирательность в присутствии мешающих виброисточников и тем самым повышает по сравнению с прототипом в выходном сигнале соотношение сигнал/помеха, что позволяет осуществить измерение характеристик вибрации от конкретного источника при наличии помех от других источников вибрации за счет устранения их влияний на результаты измерений путем их компенсации.

Кроме того, предлагаемый вибропреобразователь может быть использован для контроля несплошностей в объекте. Для этого вибропреобразователь настраивают на подавление вибросигналов от удаленных источников.

Тогда при появлении в процессе эксплуатации исследуемого объекта неоднородности или дефекта вблизи точки измерения возникает вторичный источник колебаний, сигналы от которого имеют отличные от сигналов дальнейших источников соотношения комплексных амплитуд скорости и напряжения. В результате на выходе сумматора появляется нескомпенсированный сигнал, по наличию которого осуществляют обнаружение неоднородности, дефекта.

Таким образом, предлагаемый вибропреобразователь расширяет функциональные возможности.


Формула изобретения

ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОПРЕОБРАЗОВАТЕЛЬ, содержащий последовательно соединенные пьезодатчик и усилитель напряжения, усилитель с регулируемым коэффициентом усиления и сумматор, отличающийся тем, что он снабжен интегратором, включенным между выходом усилителя напряжения и первым входом сумматора, тензодатчиком, подключенным к входу усилителя с регулируемым коэффициентом усиления, и перестраиваемым фазовращателем, включенным между выходом усилителя с регулируемым коэффициентом усиления и вторым входом сумматора, а пьезодатчик и тензодатчик предназначены для установки с зазором между ними в исследуемой среде.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к гидроакустическим измерениям и может быть использовано в судостроении и энергомашиностроении

Изобретение относится к способам измерения акустических свойств звукопроводящих сред, в частности к измерению скорости звука

Изобретение относится к акустическим измерениям и может быть использовано для определения скорости звука в воде при исследованиях мирового океана

Изобретение относится к технике акустического контроля и может быть использовано для контроля скорости распространения акустических колебаний в жидких средах

Изобретение относится к ультразвуковой технике и может быть использовано для измерения скорости ультразвука в пищевой промышленности, медицине и других отраслях народного хозяйства

Изобретение относится к ультразвуковым измерениям и может быть использовано при исследовании физико-механических свойств материалов

Изобретение относится к акустическим измерениям и может быть использовано при контроле напряженного состояния массива горных пород

Изобретение относится к акустическим измерениям и может быть использовано в гидрофизических исследованиях океана

Изобретение относится к области гидроакустики и может быть использовано для определения зависимости скорости звука от координаты, например по глубине океана

Изобретение относится к технике акустических измерений

Изобретение относится к измерительной технике и может быть использовано при измерении параметров звуковых колебаний

Изобретение относится к способам измерения скорости распространения ультразвуковых волн в кусках горных пород и может быть использовано в нефтедобывающей промышленности непосредственно в процессе бурения скважин

Изобретение относится к технике измерения свойств материалов, в частности светопрозрачных диэлектриков и пьезоэлектриков, и может быть использовано для измерения скорости ультразвука в упомянутых материалах на сверхвысоких частотах

Изобретение относится к ультразвуковой технике и может быть использовано в тех областях науки и техники, где необходимо знание скорости ультразвука в жидких средах
Наверх