Способ отбора холодоустойчивых генотипов кукурузы

 

Использование: в сельском хозяйстве, в частности при селекции кукурузы. Сущность изобретения: отбор холодоустойчивых генотипов кукурузы осуществляют путем сбора пыльцы, воздействия на нее раствором 0,005 М бензидина в ацетатном буфере pH 4,7, смесь выдерживают в течение 5 10 мин, добавляют 0,01-ный раствор перекиси водорода и по изменению интенсивности окраски смеси в течение 20 60 с оценивают холодоустойчивость генотипов, при этом бесцветная окраска характерна для холодоустойчивых генотипов (0 1 балл), голубая и синяя для среднеустойчивых (2 3 балла) и темно-синяя для неустойчивых к холоду генотипов (4 6 баллов). 1 табл. 1 ил.

Изобретение относится к сельскому производству и может быть использовано в селекции кукурузы на устойчивость к низким положительным температурам.

Известен способ оценки холодоустойчивости генотипов кукурузы, заключающийся в том, что проращивают пыльцу при оптимальной (контроль) и пониженной (опыт) температурах и по снижению количества проросших зерен в опыте по сравнению с контролем судят об устойчивости мужского гаметофита к пониженной температуре (Лях В. А. Сорока А.И. Холодоустойчивость мужских гаметофитов различных генотипов кукурузы. Известия АН Республики Молдова, серия биологических и химических наук, 1990, N 2, с. 27-32).

Однако этот метод достаточно трудоемок, длителен, требует наличия специального оборудования для проращивания пыльцы.

Известен также способ выявления холодоустойчивых самоопыленных линий кукурузы, включающий проращивание зерна при оптимальных температурах, получение белковых вытяжек из листьев и электрофоретическое разделение изопероксидаз, причем для получения белковых вытяжек используют листья 7-8-дневных проростков, и по динамике изменения суммы активностей катодных изопероксидаз с относительной электрофоретической подвижностью 30 и 75 в течение 4-5 ч и 3-4 сут воздействия низкой температурой определяют устойчивые к холоду образцы (авт. св. СССР N 1519585, кл. А 01 G 7/00, 1989).

Однако для осуществления данного способа необходимо проведение электрофореза в полиакриламидном геле, что связано с большими затратами времени.

Цель изобретения ускорение процесса отбора холодоустойчивых генотипов кукурузы.

При разработке способа отбора устойчивых к холоду генотипов кукурузы исходили из положения о том, что природа генетически обусловленной разной чувствительности пыльцы к термофакторам может обуславливаться многими причинами, в том числе свойствами мембран клетки, в частности их окислительно-восстановительной системы, играющей важную роль в адаптационных процессах.

Сущность способа заключается в том, что на зрелую пыльцу воздействуют раствором 0,005 М бензидина в ацетатном буфере рН 4,7 в соотношении 1:0,1 (мг/мл), выдерживают 10 мин, затем добвляют 0,01%-ный раствор перекиси водорода в соотношении 1:0,02 (мг/мл) и выдерживают в течение 20-60 с до проявления дифференциации в интенсивности окраски растворов, что соответствует различной степени устойчивости генотипов кукурузы. При этом используют разработанную шкалу по пятибалльной системе, имеющую следующий вид: Неокрашенный устойчивые генотипы (0-1 балл) Голубая и синяя среднеустойчивые генотипы (2-3 балла) Темно-синяя неустойчивые генотипы (4-5 балла).

П р и м е р. Используют линии кукурузы разной холодоустойчивости: N 20, НМV404, N 10, 092, N 5, N 8, ХЛГ 162, N 17, W634, XI 18, N 7, 056rf, ГКС 17.

Растения выращивают в полевых условиях по общепринятой методике. Навеску свежесобранной пыльцы (5 мг) гомогенизируют в растворе 0,005 М бензидина в ацетатном буфере рН 4,7 в соотношении 1:0,1 (мг/мл), используя стеклянные пробирки размером 5-8х70-100 мм, выдерживают 10 мин при периодическом встряхивании, затем добавляют 0,01%-ный раствор перекиси водорода в соотношении 1: 0,02 (мг/л). Фиксируют интенсивность окраски раствора в течение 20-60 с. Образцы ранжируют по этому показателю и в качестве устойчивых к холоду выделяют генотипы с неокрашенным раствором (0-1 балл), голубая и синяя окраска характерны для среднеустойчивых генотипов (2-3 балла), темно-синяя для неустойчивых (4-5 баллов).

При воздействии на пыльцу препарата проявляются четкие генотипические различия по скорости реакции окисления субстрата под действием пероксидазы цитоплазмы пыльцы, что проявляется в образовании продукта окисления бензидина синего цвета разной степени интенсивности. Время, необходимое для проявления максимальной интенсивности окраски, обратно пропорционально активности и концентрации этого фермента, в свою очередь связанной зависимостью с холодоустойчивостью. Данные представлены на чертеже, где 1 устойчивая скорость реакции окисления бензидина пероксидазой пыльцы линии кукурузы ГКС17, 2 неустойчивая линии кукурузы N20, 3 среднеустойчивая линии кукурузы ХЛГ162.

Анализ данных показывает, что у холодоустойчивых генотипов реакция окисления бензидина при осуществлении способа проходит с меньшей скоростью, чем у неустойчивых: в течение 20-60 с раствор остается неокрашенным (0-1 балл), что, возможно, обусловлено низкой концентрацией фермента. Реакционная смесь неустойчивых к холоду линий в этот же промежуток времени проявляет максимальную интенсивнорсть окрашивания: темно-синий цвет (5 баллов). Среднеустойчивым генотипам характерна голубая и синяя окраска (2-3 балла).

Проводили также исследования на нескольких выборках самоопыленных линий, ранее изученных по признаку холодоустойчивости на уровне пыльцы и семян. Данные представлены в таблице.

Как видно из таблицы, между степенью холодоустойчивости по пероксидазному тесту в баллах и способностью пыльцы прорастать при пониженной температуре существует достаточно тесная коррелятивная зависимость: чем выше степень холодоустойчивости, тем ниже степень снижения процента прорастания пыльцы в опыте (при пониженной температуре) по сравнению с контролем. В результате выявлено, что у наиболее устойчивых к холоду линий показатель холодостойкости по пероксидазному тесту составляет 0 баллов, а у неустойчивых 5 баллов, линии другой степени устойчивости занимают промежуточное положение.

Предлагаемый способ позволяет значительно ускорить отбор холодоустойчивых генотипов, поскольку создается возможность проводить оценку устойчивости на самых ранних этапах селекционного процесса. Кроме того, способ позволяет сохранять исходные ценные генотипы и использовать малые количества анализируемого материала (2-10 мг пыльцы).

Способ может быть использован для скрининга селекционно-генетического материала кукурузы по признаку холодостойкости.

Формула изобретения

СПОСОБ ОТБОРА ХОЛОДОУСТОЙЧИВЫХ ГЕНОТИПОВ КУКУРУЗЫ, включающий сбор пыльцы и последующий ее анализ, отличающийся тем, что воздействуют на пыльцу раствором 0,005 М бензидина в ацетатном буфере рН 4, 7, смесь выдерживают в течение 5 10 мин, добавляют 0,01%-ный раствор перекиси водорода и по изменению интенсивности окраски смеси в течение 20 60 с оценивают холодоустойчивость генотипов, при этом бесцветная окраска характерна для холодоустойчивых генотипов 0 1 балл, голубая и синяя для среднеустойчивых 2 3 балла и темно-синяя для неустойчивых к холоду генотипов 4 6 баллов.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к биотехнологии и может быть использовано в клеточной биологии

Изобретение относится к области генетики и селекции растений и касается получения заранее прогнозированных форм душистого горошка

Изобретение относится к сельскому хозяйству, в частности к способам воздействия на репродуктивные органы, и может быть использовано в генетико-селекционном процессе

Изобретение относится к биологии, а именно к генетике, и может быть использовано в селекции сельскохозяйственных растений для получения разнообразного исходного материала, например кукурузы

Изобретение относится к сельскому хозяйству и может быть использовано в селекции при отдаленной гибридизации и амфидиплоидизации

Изобретение относится к сельскому хозяйству и может быть использовано в селекции при отборе форм, устойчивых к пузырчатой головне

Изобретение относится к сельскому хозяйству, а именно к селекции и семеноводству, и может быть использовано научными и научно-производственными учреждениями при создании гибридов сельскохозяйственных растений и в процессе контроля их семеноводства

Изобретение относится к селькому хозяйству и может быть использовано при диагностике питания растений в процессе выращивания и при контроле качества сельскохозяйственной продукции

Изобретение относится к сельскому хозяйству, а именно к способам изменения наследственных признаков растений

Изобретение относится к сельскому хозяйству и касается приемов, применяемых при посадке растений

Изобретение относится к средствам электромагнитного воздействия на биологические объекты или их элементы, составляющие, например на растения, семена, клетки птиц, млекопитающих и т.д
Наверх