Способ гидрометаллургического выделения золота из содержащего его материала

 

Использование: для переработки золотосодержащего сырья. Сущность: способ гидрометаллургического выделения золота из золотосодержащих материалов включает стадию обработки материала, содержащего золото, кислым выщелачивающим раствором, содержащим тиомочевину и ионы трехвалентного железа. Раствор для выщелачивания также включает комплексообразователь для ионов трехвалентного железа, что резко снижает расход тиомочевины. Комплексообразователь может быть выбран из группы, содержащей ди- и трикарбоновые кислоты, фосфорную кислоту и ее соли, тиоцианаты, фториды, кремнефтористоводородную кислоту и ее соли (фторосиликаты), этилендиаминтетрауксусную кислоту и ее соли, а также смеси перечисленных соединений. 5 з. п. ф-лы, 3 табл.

Изобретение относится к выделению золота из золотосодержащих материалов, в частности из золотосодержащих руд, концентратов, анодных шламов и остатков, содержащих лом, материалов после обжига, предварительной обработкой бактериями (бактериального выщелачивания), выщелачивания под давлением или после обработки другими методами, направленными на выделение золота из его основы.

Способ основан на том, что окислительное разрушение тиомочевины ионами Fe3+ заметно снижается в случае использования химических реагентов, которые обладают способностью образовывать комплексные соединения с Fe3+ в кислых растворах.

Для выделения золота в присутствии тиомочевины необходим потенциал выщелачивания, превышающий 380 мВ относительно нормального водородного электрода. Однако потенциал выщелачивания превышающий 420 мВ относительно нормального водородного электрода может также привести к окислению тиомочевины. Потенциал окисления незакомплексованного Fe3+ равен 770 мВ относительно нормального водородного электрода. Следовательно, золото и тиомочевина будут окисляться в присутствии незакомплексованного Fe3+. В результате комплексообразования Fe3+ окислительный потенциал Fe3+ может быть снижен существенно ниже 770 мВ относительно нормального водородного электрода. Окисление золота при этом происходит с удовлетворительной скоростью, в то же время окислительный расход тиомочевины существенно снижается. На практике предпочтительно использовать окисляющий потенциал в интервале 390-500 мВ относительно нормального водородного электрода. Комплексование ионов Fe3+ в кислом растворе при рН 7 может быть достигнуто за счет использования ряда соединений.

Список некоторых комплексообразователей Fe3+ представлен в табл. 1.

Предпочтительными комплексообразующими реагентами являются те, которые могут образовать комплексы с ионами трехвалентного железа, константа стабильности которых log К больше 1, а предпочтительно больше 2.

Общие условия выщелачивания для Fe3+ и системы выщелачивания золота тиомочевиной (например с использованием комплексного Fe3+) представлены в табл. 2. Область условий, представленных в табл. 2, включает использование всех комплексующих реагентов для Fe3+, представленных в табл. 1.

Данные сравнения скорости реакции между Fe3+ и тиомочевиной в присутствии комплексообразователя (например 0,05 моль щавелевой кислоты) и в отсутствии его были получены при взаимодействии 0,05 моль раствора тиомочевины с 0,01 моль Fe3+ в 1 моль Н2SO4 при 25оС. Значение, при котором происходит 100% -ный относительный расход тиомочевины, соответствует точке, в которой все Fe3+ ионы были восстановлены в Fe2+.

Снижение окисляющей способности Fe3+ при образовании комплекса со щавелевой кислотой привело к снижению расхода тиомочевины. Однако образование комплекса Fe3+ щавелевой кислотой, приводя к снижению расхода тиомочевины, не оказывает никакого вредного воздействия на реакцию выщелачивания золота.

Начальный выщелачивающий раствор содержал 0,005 моль Fe3+ и 0,05 моль тиомочевины (0,1 моль раствор серной кислоты, 25оС). В отсутствие щавелевой кислоты скорость растворения золота постепенно падает с увеличением времени действия раствора.

Через 20 ч скорость растворения золота заметно упала (примерно на 73%), и поверхность золота приобрела темно-коричневую окраску, что указывает на некоторую пассивацию. В присутствии же щавелевой кислоты скорость растворения золота падает значительно медленнее с увеличением времени действия раствора. Например, после 960 ч (40 дней) скорость растворения золота упала только на 40% Поверхность золота также осталась блестящей глянцевой, без следов пассивации.

"Модифицированное" Fe3+ и система выщелачивания золота тиомочевиной были применены в ряде экспериментов по выщелачиванию, целью которых было воспроизведение процесса выщелачивания массы золотоносной руды. Условия приведены ниже.

П р и м е р. Процесс проиллюстрирован на примере переработки тугоплавкой пиритной руды с низким содержанием золота. Перерабатывали 7 кг руды, содержащей 1,2 г золота на кг. Приведена предварительная биологическая обработка руды, упакованной в колонку. До начала выщелачивания золота образец, содержащий примерно 80% пирита, был подвергнут окислению. Затем осуществлялось непосредственно выщелачивание золота. Руду вначале обработали раствором серной кислоты, содержащим оксалата, предназначенный для стабилизации концентрации ионов Fe3+. Как только концентрация ионов Fe3+ была стабилизирована, к выщелачивающему раствору добавляли тиомочевину. Использовали следующий состав раствора для выщелачивания, моль: Fe3+ 0,005, щавелевая кислота 0,056, серная кислота 0,100, тиомочевина 0,065. Скорость просачивания составляла примерно 32 м/ч (в среднем 322 дня).

Результаты выщелачивания руды, упакованной в колонну, суммированы в табл. 3. Результаты на 27-й день (т.е. день, когда было прекращено добавление тиомочевины) показывают, что примерно 80% выделения золота можно ожидать после примерно 43 дней, если продолжать добавлять тиомочевину.

Таким образом, достигнуты хорошие результаты как в отношении выделения золота и скорости выщелачивания, так и в отношении расхода тиомочевины. Эта технология создает новые возможности для обработки руд с низким содержанием золота, которая включает обработку кислотой, либо до обработки кислотой проводится стадия биологического окисления. Применение щелочного цианирования в этих условиях весьма ограниченно, поскольку требует дорогой и в большинстве случаев весьма неэффективной нейтрализации, а также большего чем в обычных случаях расхода цианида.

Выделение золота из выщелачивающей системы модифицированная кислота-тиомочевина осуществляли путем цементации золота в железный порошок. Однако в равной степени возможны и другие методы выделения, такие, как адсорбция на угле, электролиз, экстрагирование растворителем, восстановление водородом или цементация с порошком свинца. В типичном эксперименте к раствору, содержащему 100 тыс. долей, 0,066 моль тиомочевины, 0,1 моль серной кислоты и 0,05 моль щавелевой кислоты, добавили порошок железа. Через 30 мин зацементировалось примерно 90% золота, содержащегося в растворе.

Данная технология позволяет повысить эффективность процесса выщелаивания золота из содержащего его материала тиомочевиной.

Формула изобретения

1. СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОГО ВЫДЕЛЕНИЯ ЗОЛОТА ИЗ СОДЕРЖАЩЕГО ЕГО МАТЕРИАЛА, включающий выщелачивание материала кислым раствором, содержащим тиомочевину и ионы трехвалентного железа, отличающийся тем, что выщелачивание проводят в присутствии комплексообразователя для ионов трехвалентного железа и ведут его при поддержании окислительно-восстановительного потенциала 350-700 мВ относительно нормального водородного электрода.

2.Способ по п.1, отличающийся тем, что комплексообразователь выбирают из группы, состоящей из ди-и трикарбоновых кислот, фосфорной кислоты и солей фосфорной кислоты, тиоцианатов,фторидов,кремнефтористоводородной кислоты и фторосиликатов, этилендиаминтетрауксусной кислоты и солей этилендиаминтетрауксусной кислоты и смесей перечисленных соединений.

3. Способ по пп.1 и 2, отличающийся тем, что обработку руды проводят при температуре 10 90oС, pH раствора 0,5 4,5 при содержании в растворе 0,0025 0,1 М ионов трехвалентного железа, 0,005 0,4 М тиомочевины и 0,01 - 1,0 М комплексообразователя ионов трехвалентного железа.

4. Способ по пп.1 3 отличающийся тем, что окислительно - восстановительный потенциал поддерживают равным 390 500 мВ относительно нормального водородного электрода.

5. Способ по пп.1 4, отличающийся тем, что константа равновесия комплексов комплексообразователя с ионами трехвалентного железа превышает единицу.

6. Способ по п.5, отличающийся тем, что в качестве комплексообразователя используют щавелевую кислоту.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способам комплексной гидрохимической переработки глиноземного сырья, алунитов и бокситов, в частности ванадий- и фосфорсодержащего глиноземного сырья, при переработке которого образуются ванадиевые концентраты глиноземного производства, т.е
Изобретение относится к горной промышленности и может быть использовано на стадии подготовки руд к выщелачиваннию

Изобретение относится к горной промышленности и может быть использовано для выщелачивания золотосодержащих руд

Изобретение относится к металлургии, в частности к способам получения ванадия из шлаков и других ванадийсодержащих материалов, и может быть использовано при производстве ванадиевой продукции из ванадиевых растворов

Изобретение относится к цветной металлургии, в частности к получению металлов платиновой группы

Изобретение относится к гидрометаллургии цветных и редких металлов, в частности к ионообменным процессам

Изобретение относится к гидрометаллургии благородных металлов, в частности к линии для извлечения золота из продуктов флотационного обогащения золотосодержащих руд по угольно-сорбционной технологии, включающей установленные по ходу технологического процесса и связанные между собой транспортными средствами установку цианирования исходной пульпы, установку сорбционного извлечения металлов, установку десорбции металлов, установку регенерации угля и установку электролиза элюатов

Изобретение относится к цветной металлургии, в частности к получению металлов платиновой группы

Изобретение относится к гидрометаллургии и может быть использовано в производстве осмия

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании зернистых материалов

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании зернистых материалов

Изобретение относится к области цветной металлургии, может быть использовано при шахтной плавке материалов, содержащих цветные металлы и углерод (клинкера цинкового производства, углистых золотосодержащих концентратов)

Изобретение относится к гидрометаллургии благородных металлов, в частности к линии для извлечения золота из продуктов флотационного обогащения золотосодержащих руд по угольно-сорбционной технологии, включающей установленные по ходу технологического процесса и связанные между собой транспортными средствами установку цианирования исходной пульпы, установку сорбционного извлечения металлов, установку десорбции металлов, установку регенерации угля и установку электролиза элюатов

Изобретение относится к гидрометаллургии цветных и благородных металлов, в частности к их селективному выделению из различных водных растворов в органические азотсодержащие анионообменники с последующим извлечением металлов в водной раствор с целью их дальнейшей переработки
Наверх