Реактивный двигатель

 

Использование: в ракетно-космической технике. Сущность изобретения: реактивный двигатель содержит камеру 1 сгорания, заборное сопло 2, реактивное сопло 3 и завихритель продуктов сгорания, состоящий из тангенциально профилированного канала 4 и кольцевой камеры 5. Завихритель посредством канала 6 сообщен с выходным реактивным соплом 3. 9 з. п. ф-лы, 14 ил.

Изобретение может найти применение в качестве двигательной установки летательных аппаратов (ЛА) и аэрокосмических систем.

Известен ракетный двигатель. Недостатки его значительное аэродинамическое сопротивление и невозможность создания дополнительной тяги за счет всасывания и ускорения окружающей среды.

Известен пульсирующий воздушно-реактивный двигатель. Недостатки его наличие подвижных элементов, пульсирующий характер и невысокий уровень тяги.

Известен прямоточный воздушно-реактивный двигатель. Недостаток его необходимость применения дополнительных разгонных устройств.

Известны нагнетатель горячих газов и стартовый ускоритель, содержащие камеру сгорания, центральную проточную часть с заборным соплом и открытым выходным концом, завихритель. Их недостаток ограниченная область применения (в качестве стартового ускорителя) вследствие низкого уровня технико-экономических показателей.

Техническая задача, решаемая изобретением, расширение области применения и повышение технико-экономических показателей.

Технический результат достигается тем, что реактивный двигатель, содержащий камеру сгорания, центральную проточную часть с заборным соплом и открытым выходным концом и завихритель, согласно изобретению снабжен дополнительной кольцевой камерой, охватывающей проточную часть и сообщающей камеру сгорания с проточной частью посредством кольцевого канала. Дополнительная кольцевая камера соединена тангенциальным каналом с камерой сгорания, имеющей каналы для подвода окислителя и горючего. Двигатель снабжен сопловым направляющим аппаратом и зарядом твердого топлива, при этом сопловой направляющий аппарат установлен в кольцевом канале, а заряд твердого топлива размещен в дополнительной кольцевой камере. Проточная часть выполнена в виде отдельных профилированных каналов заборного и выходного соосно установленных сопл. Двигатель снабжен дополнительными топливными форсунками, установленными в заборном сопле. По крайней мере одно из сопл, образующих проточную часть, установлено с возможностью вращения вокруг продольной оси двигателя. Двигатель снабжен лопаточным завихрителем, а на внешней поверхности заборного сопла выполнен фланец, отделяющий камеру сгорания от выходного сопла, при этом на фланце установлен лопаточный завихритель. Дополнительная кольцевая камера соединена с несколькими камерами сгорания. Кроме того, двигатель снабжен сопловым направляющим аппаратом, при этом сопловой направляющий аппарат установлен в кольцевом канале, а камера сгорания совмещена с дополнительной кольцевой камерой. В результате этого аэродинамическое сопротивление уменьшается, уровень тяги возрастает, обеспечиваются тяга в стартовых условиях и работа двигателя в условиях окружающей среды (газообразной и жидкой), а также в космическом пространстве.

На фиг. 1 схематически изображен реактивный двигатель; на фиг.2 разрез А-А на фиг.1; на фиг.3 двигатель с несколькими камерами сгорания; на фиг.4 представлена камера сгорания с тангенциально расположенными топливными форсунками, совмещенная с кольцевой камерой завихрителя; на фиг.5 показан двигатель с дополнительными топливными форсунками в заборном сопле; на фиг.6 двигатель с кольцевой камерой сгорания и завихрителем в виде направляющего соплового блока, установленного на выходе из кольцевой камеры; на фиг.7 двигатель с тороидальной камерой сгорания и завихрителем; на фиг.8 двигатель с каналами подачи горючего и окислителя; на фиг.9 двигатель с камерой сгорания, соединенной тангенциальным соплом с кольцевым каналом; на фиг.10 двигатель с вращающимися элементами проточной части; на фиг.11 двигатель с вращающимися соплами проточной части; на фиг.12 двигатель с дополнительным направляющим аппаратом; на фиг.13 компановка ЛА с двумя двигателями; на фиг.14 разрез Б-Б на фиг.7 (вариант с твердотопливным зарядом).

Двигатель содержит камеру 1 сгорания, заборное сопло 2, реактивное сопло 3 и завихритель продуктов сгорания, который состоит из тангенциального профилированного канала 4 и кольцевой камеры 5. Завихритель посредством кольцевого канала 6 сообщен с выходным реактивным соплом 3. Заборное сопло 2, реактивное сопло 3, кольцевая камера 5, кольцевой канал 6 соосны друг другу и образуют совместно с тангенциальным каналом 4 проточную часть двигателя. Камера 5 выполнена диаметром D, а канал 6 диаметров d. Камера 5 предназначена для ускорения продуктов сгорания, а канал 6 для преобразования части окружной и радиальной составляющих скорости плоского вихря в осевую составляющую объемного вихря. Заборное сопло 2 обеспечивает всасывание окружающей среды, а выходное реактивное сопло 3 тепломасcообмен между продуктами сгорания и засасываемой окружающей средой, ускорение смеси сред и создание тяги. Соосное расположение кольцевой камеры 5 и сопл 2,3 обуславливает создание тяги при неподвижном ЛА и возможность снижения аэродинамического сопротивления за счет отсоса пограничного слоя окружающей среды с поверхности ЛА посредством заборных устройств, соединенных с проточной частью двигателя.

Работает двигатель следующим образом.

Продукты сгорания камеры 1 ускоряются в канале 4 и истекают в камеру 5, закручиваясь и образуя плоский вихрь в камере 5. Вихрь ускоряется (увеличивает окружную составляющую скорости) по мере движения от периферии к центру камеры 5, к стоку в кольцевой канал 6. Канал 6 преобразует плоский вихрь камеры 5 в объемный (винтовой) вихрь сопла 3, транспортируя часть окружной и радиальной составляющих скорости в осевую составляющую. Вихрь сопла 3 создает градиент плотности и давления среды в радиальном направлении, обуславливая максимальную величину разрежения в своей приосевой зоне. Это разрежение засасывает окружающую среду через заборное сопло 2, которая затем ускоряется в процессе тепломассообмена с винтовым вихрем продуктов сгорания в сопле 3. Смесь сред, истекая из сопла 3 в окружающее пространство, образует тягу.

Возможно, когда двигатель имеет несколько камер 1 сгорания, каждая из которых каналом 4 соединена с камерой 5. Работает исполнение аналогично описанному за исключением того, что величина тяги регулируется включением того или иного количества камер сгорания.

Возможно, когда тангенциально к камере 5 выполнены глухие отверстия 7 с расположенными в них топливными форсунками 8. Работает исполнение аналогично описанному.

Возможно, когда камера сгорания выполнена в виде кольцевой камеры 9, соосной соплу 3 и соединенной с ним посредством направляющего аппарата 10, формирующего винтовой вихрь в сопле 3 и ускоряющего продукты сгорания. По этой причине габариты двигателя уменьшаются. Работает исполнение аналогично описанному.

Возможно, когда в заборном сопле 2 расположены дополнительные топливные форсунки 11, размещенные равномерно по периферии поперечного сечения сопла 2. Вследствие этого обеспечивается несколько режимов работы двигателя работа только камер 1 сгорания, работа лишь дополнительных форсунок 11 после достижения ЛА определенной скорости, совместная работа камер сгорания и дополнительных форсунок 11. Работает исполнение аналогично описанному за исключением того, что при работе одних лишь форсунок 11 вихрь в сопле 3 не создается.

Возможно, когда камера 1 сгорания тангенциальным каналом 12 соединена с кольцевым профилированным каналом 13, сопряженным c соплом 3. Работает исполнение аналогично описанному за исключением того, что продукты сгорания, истекающие из канала 12, создают в канале 13 винтовой вихрь.

Возможно, когда проточная часть 14 двигателя, состоящая из сопла 15, выходного сопла 16 и кольцевой камеры 17, установлена в корпусе 18 двигателя с возможностью вращения в подшипниковом узле 19. Продукты сгорания подаются по профилированному каналу 20, тангенциальному к боковой поверхности цилиндрической полости 21, в которой с зазором 22 размещена камера 17. Работает исполнение аналогично описанному за исключением того, что продукты сгорания, истекающие из канала 20, взаимодействуют с поверхностью проточной части 14, приводя ее во вращение. Это обуславливает снижение потерь на трение, закручивание потока засасываемой окружающей среды и повышение уровня разрежения в приосевой зоне вихря.

Возможно, когда камера 23 сгорания и сопловой направляющий аппарат 24 жестко закреплены на корпусе 18, а заборное сопло 15 и выходное сопло 16 установлены с возможностью вращения в подшипниковых узлах 19. Работает исполнение аналогично описанному за исключением того, что вращаются лишь сопла 15 и 16.

Возможно, когда в корпусе 18 жестко закреплен дополнительный направляющий аппарат 25, установленный на выходе из реактивного сопла 16. Работает исполнение аналогично описанному за исключением того, что аппарат 25 преобразует винтовой вихрь сопла 16 в осесимметричный поток смеси сред, истекающий из двигателя и повышающий уровень тяги.

Возможно, когда камера 26 сгорания выполнена тороидальной с сопловым направляющим аппаратом 27, расположенным на выходе из камеры 26. В качестве генератора продуктов сгорания применен твердотопливный заряд 28, расположенный в камере 26. Работает исполнение аналогично описанному за исключением того, что заряд 28 сгорает в камере 26.

Возможно, когда жидкое горючее находится в баке 29, а окислитель в баке 30. Подача горючего и окислителя в камеру 26 сгорания осуществляется по соответствующим каналам в рубашке, что обеспечивает испарение горючего, подаваемого в камеру 26. Сопловой направляющий аппарат 27 закреплен на фланце, которым камера 26 сгорания отделена от реактивного сопла 3. Работает исполнение аналогично описанному.

Реактивный двигатель, обладая свойствами ракетного и прямоточного воздушно-реактивного двигателя, обуславливает адаптивный режим работы, обеспечивая старт и разгон ЛА в окружающей среде (газообразной или жидкой), полет в атмосфере и в космическом пространстве.

Формула изобретения

1. РЕАКТИВНЫЙ ДВИГАТЕЛЬ, содержащий камеру сгорания, центральную проточную часть с заборным соплом и открытым выходным концом и завихритель, отличающийся тем, что он снабжен дополнительной кольцевой камерой, охватывающей проточную часть и сообщающей камеру сгорания с проточной частью посредством кольцевого канала.

2. Двигатель по п.1, отличающийся тем, что дополнительная кольцевая камера соединена тангенциальным каналом с камерой сгорания, имеющей каналы для подвода окислителя и горючего.

3. Двигатель по п.1, отличающийся тем, что он снабжен сопловым направляющим аппаратом и зарядом твердого топлива, при этом сопловой направляющий аппарат установлен в кольцевом канале, а заряд твердого топлива размещен в дополнительной кольцевой камере.

4. Двигатель по любому из пп.1-3, отличающийся тем, что проточная часть выполнена в виде отдельных профилированных каналов заборного и выходного соосно установленных сопл.

5. Двигатель по любому из пп.1-4, отличающийся тем, что он снабжен дополнительными топливными форсунками, установленными в заборном сопле.

6. Двигатель по любому из пп.1-5, отличающийся тем, что по крайней мере одно из сопл, образующих проточную часть, установлено с возможностью вращения вокруг продольной оси двигателя.

7. Двигатель по п.2, отличающийся тем, что он снабжен лопаточным завихрителем, а на внешней поверхности заборного сопла выполнен фланец, отделяющий камеру сгорания от выходного сопла, при этом на фланце установлен лопаточный завихритель.

8. Двигатель по п.1, отличающийся тем, что дополнительная кольцевая камера соединена с несколькими камерами сгорания.

9. Двигатель по п.1, отличающийся тем, что он снабжен сопловым направляющим аппаратом, при этом сопловой направляющий аппарат установлен в кольцевом канале, а камера сгорания совмещена с дополнительной кольцевой камерой.

10. Двигатель по пп.1 и 6, отличающийся тем, что дополнительная кольцевая камера и кольцевой канал, соединяющий ее с проточной частью, установлены с возможностью вращения вокруг продольной оси двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14



 

Похожие патенты:

Изобретение относится к двигательным установкам, предназначенным для тяжелых многоступенчатых летательных аппаратов (ЛА)

Изобретение относится к ракетной технике, а именно к комбинированным ракетно-прямоточным двигателям

Изобретение относится к двигателестроению и может быть использовано при разработке двигателей маневренных разгоняющих устройств, а именно комбинированных ракетных двигателей

Изобретение относится к ракетной технике , в частности к ракетно-прямоточным двигателям

Изобретение относится к области двигателестроения и может быть использовано в конструкции разгонных устройств, Цель изобретения - повышение эффективности посредством увеличения степени полноты дожигания при уменьшении зоны химических превращений

Изобретение относится к двигателестроению и может быть использовано при разработке маневренных разгоняющих устройств

Изобретение относится к ракетной технике

Изобретение относится к авиастроению, а именно к двигателестроению, и может быть использовано для замены существующих прямоточных воздушно-реактивных двигателей (ПВРД)

Изобретение относится к авиационному двигателестроению, а именно к прямоточным воздушно-реактивным двигателям (ПВРД), и может быть использовано в двигательных установках летательных аппаратов (ЛА) больших скоростей полета
Наверх