Способ получения тугоплавких неорганических соединений в режиме горения

 

Использование: получение керамических материалов. Сущность изобретения: 1 кг титана смешивают с 0,25 кг технического углерода, смесь непрерывно подают в валковый реактор. Зона горения расположена на валке реактора. Перед подачей в зону горения смесь нагревают до температуры 1200 К, обеспечивающей расположение фронта горения на постоянном расстоянии от точки ее подачи на валок реактора. Скорость подачи смеси в зону горения определяют из условия, приведенного в формуле изобретения. Vm рассчитывают с помощью ЭВМ подстановкой величин в указанную систему уравнений. Скорость подачи в зону горения выбирают в интервале 3 < V < 5,1 (см/с), или V = 3,5 см/с. Готовый продукт - порошок черного цвета из однородных частиц карбида титана. Выход 95 - 96%. 1 ил., 1 табл.

Изобретение относится к способу получения неорганических соединений и может быть использовано в химической и машиностроительной промышленности.

Известен способ получения тугоплавких неорганических соединений локальным воспламенением реакционной смеси, содержащей металлы III-IV и неметаллы III-IV групп, в замкнутом объеме с последующим высокотемпературным реагированием в режиме горения [1] Недостатком данного способа является его низкая производительность, цикличность и неоднородность по дисперсному составу получаемого соединения.

Наиболее близким к изобретению является способ получения тугоплавких неорганических соединений в режиме горения путем непрерывной подачи исходной экзотермической смеси в зону горения реактора и ее термообработки в указанном режиме с последующим непрерывным отводом полученного соединения [2] Недостатком данного способа является его невысокий выход целевого продукта и его неоднородность по фракционному составу из-за нестабильности условий горения.

Целью изобретения является повышение выхода целевого продукта и улучшение его фракционного состава за счет повышения стабильности условий горения.

Это достигается тем, что в способе получения тугоплавких неорганических соединений в режиме горения, включающем непрерывную загрузку в реактор исходной смеси компонентов, составляющих соединение, подачу указанной смеси в зону горения и ее термообработку в названном режиме, согласно изобретению исходную смесь в процессе загрузки подают на боковую поверхность валка реактора, затем нагревают ее до температуры, обеспечивающей расположение фронта горения на постоянном расстоянии от точки подачи смеси, после чего подогретую смесь подают в зону горения, расположенную также на боковой поверхности валка, причем линейную скорость ее подачи в зону горения определяют из условия; vo < v < vm (1) где vo линейная скорость адиабатического горения исходной смеси при нормальных условиях, см/с; v линейная скорость подачи исходной смеси в зону горения, см/с; vm максимально допустимая линейная скорость подачи исходной смеси в зону горения, определяемая как ближайший к vо корень уравнения F + -4 F 0 (2) где F + 1-exp- Tг=To +
F функция переменных R, Tг, , E, , C, , ;
- функция пеpеменных , , c, , vm;
Тг температура горения, К;
безразмерная скорость;
То температура окружающей среды, К;
R универсальная газовая постоянная, кал/мольK;
Q теплотворная способность смеси, кал/г;
С теплоемкость смеси, кал/гК;
- плотность смеси, г/см3;
Е энергия активации экзотермического химического превращения смеси, кал/моль;
1 коэффициент теплопотерь валка реактора, кал/см2сК;
коэффициент теплообмена между смесью и валком реактора, кал/см2сК.

расстояние между точками подачи исходной смеси на валок реактора и выгрузки готового соединения, см.

Линейную скорость адиабатического горения исходной смеси при нормальных условиях вычисляют по скорости Зельдовича для начальной температуры То
vo exp- To + (3) где Ко предэкспонент, 1/с;
коэффициент теплопроводности смеси, кал/смсК.

На чертеже представлен реактор, в котором реализуют способ по изобретению.

Исходную экзотермическую смесь при помощи загрузочного устройства 1 подают на валок 2, который предварительно нагревают элементом 3. На валке за счет его движения загружаемая смесь располагается в виде слоя 4. Устройством 5 в зоне А-Б слоя смеси инициируют процесс горения. Готовый продукт 6 поступает в приемное устройство 7, налипший на валок продукт отделяется скребком 8. Валок заключен в кожух 9, в который через патрубок 10 вводят нейтральный газ для изоляции готового продукта от атмосферного воздуха.

Зона А-Б представляет собой зону автостабилизации фронта горения относительно точки В загрузочного устройства.

Если тепло, выделяемое при синтезе тугоплавкого неорганического соединения, достаточно для поддержания режима автостабилизации горения, то нагревательный элемент 3 отключают, если нет, то снижают его нагрев до величины, необходимой для создания условий режима автостабилизации горения.

Если фронт горения при увеличении по каким-либо причинам скорости горения приблизился к загрузочному устройству, то уменьшится расстояние между фронтом горения и загрузочным устройством. Это, в свою очередь, уменьшит время контакта слоя экзотермической смеси с поверхностью валка, максимальную температуру его подогрева и, следовательно, скорость горения экзотермической смеси. Уменьшение скорости горения переместит фронт горения в противоположную от загрузочного устройства сторону.

В том случае, когда фронт горения удалится от места загрузки, то время контакта с поверхностью валка, температура и скорость горения смеси увеличиваются и фронт горения вернется в первоначальное положение. Таким образом, на движущейся поверхности валка фронт горения колеблется относительно некоторого равновесного положения.

П р и м е р 1. Берут 1 кг титана марки ПТХ-5-1 Опытного металлургического завода дисперсностью 0,45-0,08 мм и 0,25 кг технического углерода марки ПМ 15ТС, перемешивают в смесителе в течение 8 ч. Подготовленная таким образом смесь, а также используемый в примере валковый реактор и окружающая среда имеют следующие характеристики:
плотность исходной смеси = 5 г/см3;
температура горения исходной смеси Тг 3500 К;
линейная скоpость адиабатического горения исходной смеси при нормальных условиях, рассчитанная по (3) vo 3 см/с;
теплотворная способность исходной смеси Q 640 кал/г;
энергия активации экзотермического химического превращения исходной смеси Е 4500 кал/моль;
коэффициент теплопотерь валка реактора 1 0,005 кал/см2cК;
коэффициент теплообмена между исходной смесью и валком реактора 0,45 кал/см2сK;
расстояние между точками подачи исходной смеси на валок реактора и выгрузки готового продукта 10 см;
температура окружающей среды То300 К;
универсальная газовая постоянная R2 кал/мольК;
предэкспонент Кo 3100 1/с;
коэффициент теплопроводности смеси = 0,0162 кал/смсК.

Подставляя в формулу (2) числовые значения указанных параметров, определяют с помощью ЭВМ vm. которая для данной смеси равна 5,1 см/с. Подставляя числовые значения vo и vm в (1) выбирают v в интервале
3 < v < 5,1 (см/с).

Исходную смесь помещают в загрузочное устройство 1 валкового СВС-ректора и приводят в движение валок 2 с линейной скоростью его перемещения v 3,5 см/с, предварительно нагрев его с помощью нагревательного элемента 3 до температуры Т 1200 К.

Из загрузочного устройства 1 смесь поступает на валок 2 в виде ленты, в которой при достижении ею зоны реакции А-В инициируют процесс горения с помощью устройства 5. Затем готовый продукт собирают в приемное устройство 7. Полученный продукт измельчают в течение 1 ч с загрузкой шаров в весовом соотношении к порошку 5:1.

Готовый материал представляет собой порошок черного цвета, состоящий из однородных частиц карбида титана. Выход ТiС 95% интервал зернистостью 0,5-15 мкм.

В таблице представлены данные по выходу и фракционному составу тугоплавких неорганических соединений, полученных в режиме горения, по изобретению.

Из представленных в таблице данных следует, что изобретение позволяет получить различные тугоплавкие неорганические соединения, в частности карбиды, бориды, силициды, сложные карбиды и т.д. с выходом целевого продукта не менее 95% Порошки однородны по фракционному составу, способ легко автоматизируется.


Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РЕЖИМЕ ГОРЕНИЯ, включающий непрерывную загрузку в реактор исходной смеси компонентов, составляющих соединение, подачу указанной смеси в зону горения и ее термообработку в названном режиме с последующей непрерывной вырузкой полученного соединения, отличающийся тем, что, с целью повышения выхода и улучшения фракционного состава соединения за счет повышения стабильности условий горения, исходную смесь в процессе загрузки подают на боковую поверхность валка реактора, затем нагревают ее до температуры, обеспечивающей расположение фронта горения на постоянном расстоянии от точки подачи смеси, после чего подогретую смесь подают в зону горения, расположенную также на боковой поверхности валка, причем линейную скорость ее подачи в зону горения определяют из условия:
vо < v < vm,
где vо - линейная скорость адиабатического горения исходной смеси при нормальных условиях, см/с;
v - линейная скорость подачи исходной смеси в зону горения, см/с;
vm - максимально допустимая линейная скорость подачи исходной смеси в зону горения, определяемая как ближайший к vо корень уравнения





F - функция переменных
- функция переменных a, x, C, , vm;
Tг - температура горения, К;
Tо - температура окружающей среды, К;
- безразмерная скорость;
R - универсальная газовая постоянная, кал/моль К;
q - теплотворная способность смеси, кал/г;
c - теплоемкость смеси, кал/г К;
- плотность смеси, г/см3;
E - энергия активации экзотермического химического превращения смеси, кал/моль;
a1 - коэффициент теплопотерь боковой поверхности валка реактора, кал/см2 с К;
- коэффициент теплообмена между смесью и боковой поверхностью валка реактора, кал/см2 с К;
x - расстояние между точками подачи исходной смеси на валок реактора выгрузки полученного соединения, см.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способу получения неорганических соединений и может быть использовано в химической и машиностроительной промышленности
Изобретение относится к получению карбидов и может быть использовано в твердосплавной промышленности, производстве шлифовальных и полировальных материалов, в металлургической и инструментальной промышленности

Изобретение относится к неорганической химии, а именно к технологии получения карбида титана, который может быть использован как абразивный материал в порошках и пастах, шлифовальных кругах, а также применяться как износостойкий материал для напыления

Изобретение относится к получению тугоплавких и коррозионно-стойких соединений

Изобретение относится к металлургии тугоплавких соединений, а именно к способу получения карбида титана, включающему восстановление смеси тетрахлоридов титана и углерода

Изобретение относится к технологии получения неорганических соединений, в частности соединений тугоплавких металлов с легкими неметаллами
Изобретение относится к области порошковой металлургии и касается способа получения порошков тугоплавких соединений на основе карбидных или нитридных соединений титана, которые могут быть использованы для производства режущего инструмента, металлической арматуры и т.п

Изобретение относится к способу получения карбида железа, пригодного в качестве сырьевого материла для производства чугуна и стали

Изобретение относится к области металлургии производства тугоплавких материалов - карбонитридов, а именно к созданию способа получения карбонитрида титана, позволяющего создать однородный продукт заданного состава с минимальным содержанием свободного углерода

Изобретение относится к металлургии производства тугоплавких материалов-карбидов

Изобретение относится к области металлургии, производства тугоплавких материалов - карбидов титана
Наверх