Способ получения лазерного излучения и устройство для его осуществления

 

Использование: в квантовой электронике. Сущность изобретения: способ получения лазерного излучения, включающий возбуждение прокачиваемой активной газовой среды ядерными осколками, испускаемыми делящимися материалами под воздействием поля тепловых нейтронов, вывод излучения и охлаждение активной газовой среды до температуры, сравнимой с температурой поверхности, ограничивающей лазерный объем, проводят в поле тепловых нейтронов, чередуя с возбуждением, при этом кювета выполнена составной вдоль направления впуска и выпуска активной газовой среды, между ее частями установлены теплообменники, оптические элементы для формирования и вывода излучения установлены на торцовых поверхностях, перпендикулярных поверхностям, служащим для впуска и выпуска активной газовой среды, а слои из делящегося материала нанесены на съемные подложки из материала с температуропроводностью выше 0,5 10-4 м2 /с с толщиной более 1 см. 2 с. и 1 з. п. ф-лы. 1 ил.

Изобретение относится к квантовой электронике, а именно к генерации квазинепрерывного (непрерывного) лазерного излучения большой мощности, и может быть использовано в решении технологических и лазерно-химических задач.

Известны способ получения лазерного излучения и устройство для его осуществления [1] Способ включает возбуждение активной газовой среды осколками, испускаемыми из слоя делящегося материала 235U под воздействием поля тепловых нейтронов, и вывод излучения из объема лазера.

В устройстве, реализующем этот способ, поток тепловых нейтронов создается ядерным реактором. Лазерное устройство представляет собой алюминиевую трубу, внутри которой помещена кювета, две противолежащие поверхности которой выполнены из алюминиевых пластин, покрытых с внутренней стороны слоем делящегося материала 235U, и в виде окиси-закиси. Поверхности параллельны друг другу и расположены на расстоянии 2 см, их размеры 200х6 см2. С двух других противолежащих поверхностей кювета ничем не ограничена. На торцовых поверхностях расположены оптические элементы для формирования и вывода излучения оптический резонатор из глухого сферического с радиусом около 20 м и плоского полупрозрачного интерференционного зеркал с пропусканием 6% Длительность нейтронного импульса составляет (5-6) 10-3с.

К недостаткам известных способа и устройства для его осуществления следует отнести перегрев рабочей смеси при значительном увеличении длительности импульса накачки (повышение температуры при длительности около 1с составляет порядка 7000 К). Перегрев приводит к срыву генерации первоначально из-за развития оптических неоднородностей уже через (15-20) 10-3 с после начала накачки. В конечном итоге, снижается КПД всей установки при увеличении длительности накачки.

Наиболее близкими к предлагаемым являются способ получения лазерного излучения и устройство для его осуществления [2] Способ включает возбуждение прокачиваемой активной газовой среды ядерными осколками, испускаемыми из слоя делящегося материала под воздействием поля тепловых нейтронов, перенос возбужденных атомов или молекул газовым потоком из зоны облучения осколками 235U в объем лазерного резонатора, вывод вынужденного излучения, охлаждение активной газовой среды вне поля тепловых нейтронов.

В устройстве, реализующем этот способ, две противолежащие кольцевые поверхности кюветы с внутренней стороны покрыты слоем делящегося материала, а две другие, являющиеся цилиндрическими поверхностями, служат для впуска и выпуска активной газовой среды. Кольцевые кюветы располагаются стопой, образуя полый цилиндр, во внутренней полости которого расположен источник нейтронов ядерный реактор. Кольцевой объем лазерного резонатора охватывает цилиндр, образованный кюветами. Торцовые поверхности, на которых расположены оптические элементы для формирования и вывода излучения, перпендикулярны образующим цилиндрических поверхностей, служащих для впуска активной газовой среды в объем резонатора из кольцевых полостей кювет. Охлаждение смеси производится вне объема, занятого полем тепловых нейтронов.

К недостаткам данных способа и устройства следует отнести низкий КПД. Из-за большой скорости газового потока (не менее 100 м/с), чтобы предотвратить перегрев активной среды при непрерывной работе с длительностью импульса порядка 1 с и более, мощность прокачивающего газ устройства составляет несколько сот киловатт. Кроме того, такая скорость газового потока приводит к значительной турбулизации газовой смеси. Плотность газового потока из-за нагрева под действием осколков и при радиальном движении падает с увеличением радиуса, что снижает эффективность поглощения энергии осколков деления и приводит к дополнительной неоднородности показателя преломления в объеме оптического резонатора. При таком способе работы лазерного устройства, когда область возбуждения разнесена с областью формирования и вывода вынужденного излучения, могут быть использованы лишь лазерные среды, обладающие большим временем жизни возбужденного состояния (больше 10-3 с), какие в настоящее время отсутствуют.

Целью изобретения является повышение КПД способа и устройства для его осуществления.

Предложенный способ и устройство позволяют получить сокращение времени цикла операций возбуждения-охлаждения, возможность его многократного повторения при прохождении потока газа в поле тепловых нейтронов и снижение тепловых потоков между активной газовой средой и поверхностью, ограничивающий лазерный объем, что позволяет снизить наряду со скоростью газового потока величину неоднородностей показателя преломления активной среды лазера, что приводит к уменьшению не только мощности системы прокачки, но и внутренних потерь в лазерной среде, а следовательно, к увеличению КПД устройства.

Устройство позволяет снизить скорость прокачки газовой среды, так как расстояние, проходимое смесью при ее возбуждении между двумя теплообменниками, где газ охлаждается относительно мало и смесь не успевает нагреться до образования оптических неоднородностей, снижающих энергию генерации либо приводящих к ее срыву, уменьшается. Оптические неоднородности, связанные с турбулизацией потока при малой скорости, также уменьшаются. Так как охлаждение проводится до температуры слоя делящегося материала, который является частью поверхности, ограничивающей лазерный объем, то не возникает значительных перепадов температур между газовой смесью и слоем, а значит, градиенты плотности и, как следствие, градиенты показателя преломления вблизи границы и область, занятая ими, малы. Достаточно высокое оптическое качество активной среды позволяет реализовать режим регенерации с высоким КПД.

При значительном снижении скорости V потока газовой смеси мощность системы прокачки Р снижается по зависимости РV3, что приводит к увеличению КПД всего устройства лазера.

Таким образом, и повышение оптической однородности газовой среды, и снижение мощности системы прокачки позволяют увеличить КПД устройства.

Выполнение подложки слоя делящегося материала съемной позволяет достаточно просто сменить слой. Ресурс установки определяется в первую очередь ресурсом слоя делящегося материала, который выгорает в ядерных реакциях, выносится вместе с вылетающими осколками деления и подвергается ветровой эрозии. Выполнение подложки из материала с температуропроводностью выше 0,5 10-4 м2/c и толщиной более 1 см позволяет уменьшить температуру поверхности, контактирующей с газовой средой, за счет увеличения массы материала подложки, участвующего в нагреве, и тем самым снизить градиенты показателя преломления.

На чертеже представлено заявляемое устройство для реализации способа, которое содержит источник 1 поля тепловых нейтронов, кювету, противолежащие поверхности которой покрыты с внутренней стороны слоем 2 делящегося материала, нанесенного на съемные подложки 3 из материала с высокой температуропроводностью. Две другие поверхности 4 и 5 служат соответственно для впуска и выпуска газовой активной среды. На торцовых поверхностях, перпендикулярных им, расположены оптические элементы 6 для формирования и вывода излучения. Между частями кюветы установлены теплообменники 7.

Устройство работает следующим образом.

После установления стационарного потока активной среды создается поле тепловых нейтронов с помощью источника 1. Активная среда возбуждается, проходя мимо слоев 2 делящегося материала, и одновременно с этим в объемах, ограниченных слоями 2 и поверхностями двух последовательно расположенных теплообменников 7, возникает лазерное излучение, которое через оптические элементы 6 выводятся из объемов. Активная среда, проходя теплообменник 7, охлаждается. Таким образом, происходит чередование возбуждения и охлаждения потока газовой среды, проходящей последовательно области возбуждения между слоями 2 и охлаждения в теплообменниках 7. Тепловая энергия, составляющая около 75% от выделившейся в слоях в результате деления, рассасывается в объеме подложки 3. В результате этого не происходит чрезмерного перегрева слоя в течение нейтронного импульса. При выгорании делящегося материала слоя 2 подложки 3 вместе со слоями заменяют другими.

Для плотности потока нейтронов 1015 н/см2с, длительности импульса 1 с требуется скорость прокачки 10 м/с при расстоянии между слоями 2 см, ширине слоев 6 см, ширине по потоку теплообменника 3 см, давлении рабочего газа Не 2 атм. Разница в температуре газа на входе и выходе объема между слоями составляет около 50 К, нагрев слоев при толщине подложки 1 см из алюминия, бериллия или графита не превышает 60 К.

Предлагаемый способ и заявляемое устройство на его основе позволяют увеличить КПД установки за счет улучшения оптического качества активной газовой среды и снижения мощности системы прокачки и создать высокоэффективный источник лазерного излучения с возбуждением активной среды ядерными осколками, испускаемыми из слоев делящегося материала либо возникающими непосредственно в объеме активной среды лазера.

Формула изобретения

1. Способ получения лазерного излучения, включающий возбуждение прокачиваемой активной газовой среды ядерными осколками, испускаемыми делящимся материалом под воздействием поля тепловых нейтронов, вывод излучения и охлаждение активной газовой среды, отличающийся тем, что, с целью повышения КПД, возбуждение чередуют с охлаждением, которое проводят в поле тепловых нейтронов до температуры, сравнимой с температурой поверхности, ограничивающей активную газовую среду.

2. Устройство для получения лазерного излучения, включающее источник тепловых нейтронов, кювету, две противолежащие поверхности которой с внутренней стороны покрыты слоем делящегося материала, а две другие служат для впуска и выпуска активной газовой среды, и оптические элементы для формирования и вывода излучения, отличающееся тем, что, с целью повышения КПД, кювета выполнена составной вдоль направления впуска и выпуска активной газовой среды, причем между частями кюветы установлены теплообменники, а оптические элементы расположены перпендикулярно поверхностям, служащим для впуска и выпуска активной газовой среды.

3. Устройство по п. 2, отличающееся тем, что слои из делящегося материала нанесены на съемные подложки из материала с температуропроводностью выше 0,5 10-4 м2/с и толщиной более 1 см.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технической физике, в частности к быстроточным газодинамическим лазерам /ГДЛ/

Изобретение относится к квантовой электронике и может быть использовано при создании химических иодно-кислородных лазеров непрерывного действия различного назначения

Изобретение относится к квантовой электронике и может быть использовано при разработке источников света на парах металлов, в частности лазеров на самоограниченных переходах

Изобретение относится к области квантовой электроники

Изобретение относится к технике импульсных газовых лазеров, работающих на смесях с высоким давлением

Изобретение относится к квантовой электронике и предназначено для создания мощной лазерной установки, работающей на продуктах сгорания

Изобретение относится к квантовой электронике и предназначено для создания мощной лазерной установки, работающей на продуктах сгорания

Изобретение относится к области квантовой электроники, а именно к газоразрядным проточным лазерам с замкнутым контуром непрерывного и импульсно-периодического действия

Изобретение относится к лазерному оборудованию, а точнее к устройству газообмена электрозарядного CO2-лазера

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов

Изобретение относится к лазерной технике, а именно к быстропроточным газоразрядным лазерам, и может быть использовано при создании технологических газовых лазеров

Изобретение относится к квантовой электронике, более конкретно к газоразрядным СО-лазерам, генерирующим излучение на переходе первого колебательного обертона, и может быть использовано при создании технологических лазеров

Изобретение относится к области лазерной техники, а более конкретно - к области мощных газовых лазеров

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике и может использоваться при производстве молекулярных газовых лазеров с высокочастотным возбуждением для систем лазерной локации и связи, а также при создании лазерных технологических установок для высокоточной обработки материалов и медицинской техники

Изобретение относится к квантовой электронике и может быть использовано при производстве лазеров непрерывного действия на парах металлов
Наверх