Способ освоения газовых и газоконденсатных скважин и устройство для его осуществления

 

Использование: скважинная разведка газовых и нефтяных месторождений. Сущность изобретения: на устье скважины измеряют и регулируют расход газа, определяют и замеряют количество выносимых механических примесей и жидкости. Причем определяют качественный состав механических примесей и изменение его во времени в зависимости от дебита, по которому определяют степень очистки или разрушения призабойной зоны. Освоение производится в широком диапозоне расходов с использованием импульсного воздействия на пласт. Качественный контроль степени очистки или разрушения призабойной зоны пласта осуществляется устройством, смонтированным непосредственно на устье скважины. Устройство включает в себя установленные в корпусе последовательно четыре ступени очистки газа, включающие вращающиеся разделители отбойника, измеритель расхода, накопители механических примесей и жидкости, соединенные с полостями измерения твердых и жидких фаз газового потока. 2 с. и 1 з. п. ф-лы, 6 ил.

Изобретение относится к скважинной разработке газовых и нефтяных месторождений и может быть использовано для осуществления непрерывного контроля за отработкой призабойных зон добывающих скважин в процессе их освоения и оценки текущего деформационно-напряженного механического состояния пород пласта-коллектора в околоскважинном пространстве.

Известны способы и устройства отработки газовых и газоконденсатных скважин [1] Наиболее близким к предлагаемому является устройство для исследования скважин [2] позволяющее определить степень очистки призабойной зоны пласта по полу- ченным кривым (P2/Q; /Q1) Основными недостатками существующего устройства являются: отсутствие качественного контроля степени очистки или разрушения призабойной зоны пласта по основным параметрам содержания механических примесей и жидкости в продукции скважины, вышедшей из бурения или капитального ремонта; невозможность использования предлагаемой схемы обвязки устья скважины для непрерывного измерения и контроля основных параметров эксплуатации; низкая эффективность работы и достоверность данных используемых сепарационных устройств и большие затраты времени на монтажно-демонтажные работы.

Целью изобретения является определение степени очистки или разрушения призабойной зоны пласта, повышение надежности газопромыслового оборудования и предотвращение выпуска газа в атмосферу в процессе освоения экспериментальной скважины.

На фиг.1 изображена схема отработки скважины в широком диапазоне расходов непосредственно на скважине с использованием импульсного воздействия на пласт; на фиг. 2 байпасная линия; на фиг.3 установка, вид сверху; на фиг.4 схема контроля степени очистки разрушения призабойной зоны пласта; на фиг.5 схема разрушения призабойной зоны пласта скважины 805 Медвежьего месторождения; на фиг.6 схема очистки призабойной зоны пласта скважины 2143 Ямоургского месторождения.

Экспериментально полученные данные (фиг.5, 6) с учетом расхода очищенного газа (Q, тыс. н.м3/сут), депрессии ( Р, МПа), диаметра штуцера (d, мм), рабочего давления (Pp, МПа), времени работы на режиме (), измеренных величин удельного выноса механических примесей (Пфi, мг/м3), жидкости (Wфi, см33) из призабойной зоны пласта сравниваются с эталонными, которые предусматривают допустимые содержания механических примесей до 3 мг/3, жидкости до 0,3 см33, кроме того учитывается гранулометрический и петрографический состав фракций пласта-коллектора и гидрохимический состав выносимой жидкости.

На технологической линии (фиг.1) непосредственно на устье скважины после регулируемого штуцера 1 устанавливается байпасная линия 2, включающая задвижки 3, 4, 5, 12, 13; установку 6 для освоения; измеритель 7 расхода очищенного газа; газопровод 8; скважины 9, 10, 11; регуляторы 14 расхода технологической линии на входе в пункт подготовки газа (УКПГ).

Система задвижек 3, 4, 5 позволяет непрерывно без остановки скважины проводить отработку в газопровод; задвижки 12, 13 и регулятор 14 расхода используются для переброски газового потока с целью увеличения или уменьшения рабочего расхода скважины или проведения импульсного дренажа с целью ускорения процесса очистки.

Устройство (фиг. 4) для освоения скважин содержит фланцевые соединения 15, 16, 17, 18; корпус 19; вращающиеся лопастные аппараты 20, 21, совмещенные с вращающимися коническими отбойниками 22, 23, 24, 25; патрубком-отбойником 26; цилиндрический щелевой защитный кожух 27; вентили 28, 29, 30, 31 отбора проб газа; термокарманы 32, 33; перепадомер 34; диафрагмы 35; манометры 36-41; вентили 42-49; быстросъемные соединения 50-53; контейнеры-накопители 54-57 твердых и жидких фаз; контейнеры-измерители механических примесей 58, жидкостей 59; линия 60 отвода механических примесей и жидкости выполнена с целью разделения твердых и жидких фаз, поступающих из контейнеров-накопителей, оснащена тонкодисперсным фильтром 61, дегазационная линия 62 отвода газа, оснащенная фильтром 63 тонкой очистки, сообщается с основными потоком перед измерителем очищенного газа.

Устройство работает следующим образом.

Поток газовой смеси поступает через установку 6 (фиг.1) в измеритель 7 расхода в газопровод при открытых задвижках 4, 5 и закрытой задвижке 3.

Поток газа, проходя через вращающийся лопастной аппарат (фиг.4) 20, жестко соединенный с коническо-цилиндрическими отбойниками 22 23, приводит в движение вокруг своей оси разделитель потока, на поверхностях которого происходит разделе- ние газовой смеси и удаление примесей за счет центробежных сил из кольцевой камеры между корпусом 19 и наружной поверхностью вращающегося лопастного аппарата 20 и стационарного патрубка 26. Механические примеси и жидкость удаляются с помощью цилиндрического щелевого отделителя 27 и поступают в накопители 54-57.

Очищенный газ поступает во вторую секцию сепарации, где и происходит его дальнейшая очистка, причем вращающийся лопастной аппарат 21 совместно с отбойниками 24, 25 вращается в противоположную сторону. Капельная и твердая фазы разделяются за счет образования пленки на поверхности аппарата 20 и под действием центробежных сил отводятся на внутреннюю и внешнюю поверхности разделителей-отбойников 22, 23 и под действием поступательно-вращательных сил отводятся в пространство между корпусом 19 и наружной поверхностью отбойников 22, 23 и стационарным патрубком 26, которые одновременно выполняют функцию защиты корпуса 19 от разъедания и налипания.

Поступившие в кольцевую камеру механические примеси и жидкость отводятся в контейнеры-накопители 54-57 и удаляются непрерывно патрубками отвода примесей по линии 60 в контейнеры-измерители 58, 59, в которых производится разделение твердых и жидких фаз фильтром 61 и измерение их количества фаз, гранулометрического состава и гидрохимического анализа непрерывно.

Эффективность работы каждой сепарации в отдельности определяется с использованием вентилей 44-48 и вентилей 28-31 отбора проб газа, установленных на выходе из секции. Газ, поступивший с примесями в контейнеры-накопители, отводится по линии 62, которая оснащена фильтрами 63 тонкой очистки, установленными в верхней части контейнеров-накопителей 54-57 для измерения в основной поток перед диафрагмой 35.

Газовая смесь, поступая последовательно в каждую из четырех секций, смонтированных в корпусе, окончательно очищается и поступает на измеритель расхода очищенного газа, а в дальнейшем в газопровод.

Сущность способа освоения с учетом технологической схемы обвязки и применяемого устройства заключается в измерении и определении качественных характеристик выносимых из призабойной зоны пласта механических примесей и жидкости при задан- ном расходе в газопровод и обеспечивает надежность работы газопромыслового оборудования за счет установки 6, обеспечивающей очистку газа от механических примесей и жидкости.

Метод освоения при заданном дебите (Q), измеряемом измерителем 7 (фиг. 1), определяет удельные величины удельного выноса жидкости (Wфi) и механических примесей (Пфi), причем для конкретного i-го режима должны иметь место соотношения Wфi= lim при t i (1) Пфi= lim при t i (2) где Vж, Vп масса выносимых на i-том режиме в течение времени механических примесей и жидкости; qi дебит скважины на i-ом режиме; i продолжительность i-го режима, устанавливаемого по моменту достижения стационарности выноса; Vжi, Vпi суммарный вынос за i.

Получение сравнительных характеристик и качественного определения степени очистки или разрушения призабойной зоны пласта производится непосредственно на скважине. Введены параметры (показатели) как отношение фактического выноса жидкости (Wфi) к удельному количеству жидкости, выносимой на устье скважины (Wкi), выделившейся на данном режиме при движении газа из пласта к устью:
Wi= (3)
Используя формулу Бюкачека для определения влагосодержания в газе , , окончательно получают:
Wi=
(4) где Тпл, Ту пластовая, устьевая температуры,
А, В коэффициент формулы Бюкачека для определения влагосодержания газа, равновесного с водой.

Аналогичный параметр удельного выноса твердой фазы механических примесей определяют как отношение удельного выноса к установленному ОСТ 51-40-83 и ТУ 51-147-83 содержанию механических примесей в продукции скважины (обеспечивающей надежность работы газопромыслового оборудования):
Пi= (5)
Тогда основные сравнительные параметры, полученные экспериментально (фиг.5, 6), будут иметь вид:
f1(G), W= f2(G), П= f3(G) (6) при G=f[d(t)] G*<G<G*<пд;
0 < t< n где d диаметр штуцера, установленного на установке;
- время всего освоения.

Если в процессе освоения суммарный вынос примесей в течении увеличивается, а результаты гранулометрического, петрографического состава механических примесей подтверждают наличие преобладающих компонентов пласта-коллектора (фиг.5), то кривая 3'' свидетельствует о разрушении призабойной зоны пласта скважины 805 Медвежьего месторождения. Данные лабораторных анализов подтверждают наличие частиц скелета пласта и пластовой жидкости.

На фиг. 6 показаны 2', 3' экспериментальные кривые скв.2143 Ямбургского месторождения, свидетельствующие об очистке призабойной зоны пласта, наличии повышенного содержания жидкости и механических примесей, которое получено в процессе освоения, как видно из графиков, уменьшается качественный анализ выносимой жидкости и механических примесей, что свидетельствует о том, что жидкость представлена фильтратом бурового раствора, а механические примеси размером фракций менее 0,01 являются частицами применяемых при бурении скважин.

Установка и способ освоения обеспечивают надежность работы промыслового оборудования за счет очистки продукции скважины от примесей, являющихся либо продуктами разрушения призабойной зоны пласта, либо привнесенных в процессе бурения, капитального ремонта технологических жидкостей.

Кроме того, освоение скважин по предлагаемой схеме позволяет выйти за пределы рабочих режимов эксплуатационных скважин и исключить выпуск газа в атмосферу. При освоении скважины Медвежьего месторождения выбрасывается в атмосферу до 2 млн.м3/сут, по Ямбургскому месторождению до 5 млн.м3/сут из одной скважины.

Предлагаемый способ и устройство с учетом схемы и места установки исключают полностью выброс сырья и загрязнение окружающей среды.

Импульсный дренаж с целью повышения эффективности освоения производят с использованием pегулируемого штуцера 1 байпасной линии 2 (фиг.1), измерителя 7 и регуляторов 14 расхода технологической линии. При проведении импульсного дренажа после работы через установку 6 на режимах ниже рабочего с замером параметров скважину останавливают, замеряя статическое давление, после чего устанавливают диафрагму на измерителе 7, обеспечивающую расход газа выше рабочего на 150-200 тыс.нм3/сут, и используя общий расход куста скважин с учетом осваиваемой, производят запуск основной скважины и контролируют параметры работы, которые сравниваются с предыдущими при одинаковой продолжительности времени освоения.


Формула изобретения

1. Способ освоения газовых и газоконденсатных скважин, включающий создание депрессии на пласт, вызов притока пластового флюида, измерение и регулирование расхода газа, определение и замер количества выносимых механических примесей и жидкости на устье скважины и определение удельного содержания примесей в газе, отличающийся тем, что, с целью повышения информативности процесса освоения, определяют качественный состав механических примесей и изменение его во времени в зависимости от дебита, по которому определяют степень очистки или разрушения призабойной зоны.

2. Способ по п.1, отличающийся тем, что, с целью предотвращения выпуска газа в атмосферу при освоении скважин, подключенных к установкам комплексной подготовки газа и оборудованных на устье байпасной линией, депрессию на пласт изменяют импульсно с регулированием давления и расхода газа на байпасной линии и на установке комплексной подготовки газа.

3. Устройство для освоения газовых и газоконденсатных скважин, включающее установленные последовательно в корпусе блоки очистки газа, измеритель расхода газа, входной направляющий патрубок, цилиндрические контейнеры-накопители механических примесей и жидкости, соединенные с полостями блоков очистки газа, измеритель расхода газа соединен с последним со стороны входного направляющего патрубка блоком очистки газа, полость контейнера-накопителя которого соединена с полостью устройства до измерителя расхода газа, отличающееся тем, что, с целью повышения надежности в работе устройства при наличии большого количества механических примесей и жидкости, устройство снабжено двумя дополнительными блоками очистки газа и контейнерами-измерителями, каждый блок очистки газа содержит лопастной аппарат, два соосно расположенных один в другом разделителя-отбойника, патрубок-отбойник и цилиндрический щелевой отделитель, причем лопастной аппарат и разделители-отбойники установлены с возможностью вращения вокруг продольной оси, внутренние отбойники-разделители и патрубок-отбойник имеют внутреннее равнопроходное сечение, а полости контейнеров-накопителей соединены с контейнерами-измерителями.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к приборам и системам для определения пространственного положения оси необсаженных буровых скважин

Изобретение относится к приборам и системам для определения пространственного положения оси необсаженных буровых скважин

Изобретение относится к бурению геологоразведочных, нефтяных и газовых скважин

Изобретение относится к горной промышленности, а конкретно к средствам контроля перетоков жидкости и газа в глубоких нефтяных и газовых скважинах

Изобретение относится к системам и комплексам для определения пространственного положения оси буровой скважины, в частности к гироскопическим инклинометрам (гироинклинометрам)

Изобретение относится к буровой технике, а именно к техническим средствам контроля забойных параметров

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для измерения объема жидкости, свободного газа и обводненности продукции скважин при исследовании скважин

Изобретение относится к нефтедобывающей, нефтеперерабатывающей и химической промышленности, в частности к способам контроля содержания нефти в пластовой жидкости скважины в процессе ее эксплуатации

Изобретение относится к нефтедобывающей, нефтеперерабатывающей и химической промышленности, в частности к способам контроля содержания нефти в пластовой жидкости скважины в процессе ее эксплуатации

Изобретение относится к точному приборостроению и может быть использовано, например, для обследования нефтяных, газовых и геофизических скважин путем движения скважинного прибора в скважине в непрерывном или точечном режиме, при определении азимута и зенитного угла скважины

Изобретение относится к устройствам для измерения температуры в буровых скважинах

Изобретение относится к области нефтедобывающей промышленности, а именно к области измерения продукции (дебита) различных категорий нефтяных скважин (мало-, средне- и высокодебитных) и определения фазного и компонентного составов

Изобретение относится к средствам контроля технического состояния обсадных колонн в скважинах и может быть использовано в различных отраслях народного хозяйства

Изобретение относится к геофизическим исследованиям

Изобретение относится к нефтяной и газовой промышленности, в частности к способам, применяемым для геофизических исследований скважин, и предназначено для технического состояния их крепи: обсадной колонны и цементного кольца в заколонном пространстве, а также спущенных в скважину насосно-компрессорных труб (НКТ)
Наверх