Способ получения поликристаллических алмазов заданной формы

 

Использование: в производстве искусственных алмазов. Сущность изобретения: углеродосодержащий материал заданной формы окружают порошкообразным катализатором, содержащим карбит вольфрама, карбит титана, кобальт, борид титана и цирконий и воздействуют высокими давлением и температурой. Новым в способе является дополнительно взятые в качестве катализатора порошки борида титана и циркония, при следующем соотношении компонентов, мас.%: карбит вольфрама 60 - 70; карбит титана 10 - 12; кобальт 2,4 - 2,6; цирконий 15 - 21; борид титана 2,4 - 2,6. Скорость повышения температуры 1400 - 1600oС/с. Выдерживают при рабочей температуре 1 - 2 с и обрабатывают смесью азотной и плавиковой кислот при комнатной температуре.

Изобретение относится к производству искусственных поликристаллических алмазов и может быть использовано в отраслях промышленности, связанных с механической обработкой материалов (приборостроение, часовая промышленность, машиностроение и т.д.).

Известен способ синтеза поликристаллических алмазов из углеродсодержащего материала в присутствии металлов, которые служат растворителями для углерода [1] Способ заключается в том, что исходный материал подвергают действию высокого давления и высокой температуры в области стабильности алмаза. В качестве растворителя углерода применяют один или несколько металлов, таких как ванадий, титан, вольфрам, молибден, рений, цирконий, гафний или их соединения. Синтез проводят при 2200-3700оС и Р=95-130 кбар в течение 10 с 5 мин.

Недостатком способа является очень жесткий режим для аппаратуры высокого давления.

Известен также способ получения поликристаллических алмазов заданной формы, при котором полуфабрикат из углеродсодержащего неалмазного материала в присутствии порошкообразного катализатора подвергают действию давления 8,0 кбар и нагревают до 1500оС в течение 0,1-10 с помощью импульсов электрического тока до образования поликристаллических алмазов заданной формы [2] Недостатками данного способа являются наличие микротрещин в поликристаллах, неоднородность распределения металлических каплеобразных включений по объему образца, достигающих до 15 мкм в длину, а также большой разброс в размере зерен, составляющих 5-100 мкм, что снижает механическую прочность образцов, недостатком является и то, что обработку полученных агрегатов ведут смесью азотной и плавиковой кислот, взятых в соотношении 3:1 при температуре кипения смеси.

Наиболее близким техническим решением является способ получения поликристаллических алмазных агрегатов [3] Способ заключается в том, что углеродсодержащий материал по форме готового агрегата, окруженного оболочкой из катализатора, подергают воздействию высокого давления около 80 кбар и температуры около 1500оС в течение 0,1-10 с, в качестве катализатора используют смеси из порошков карбида вольфрама, карбида титана и кобальта.

Полученные этим способом отдельные алмазные агрегаты заданной формы и размеров имеют механическую прочность и абразивную стойкость, сопоставимую с такими же характеристиками природных алмазов. Однако выход годных поликристаллов составляет около 50% Используемый в этом способе катализатор с введенным в него наполнителем характеризуется повышенной жесткостью среды, передающей давление, усадка порошка-катализатора при спекании достигает 30% что приводит в процессе синтеза к образованию трещин, неоднородностей и механических дефектов в получаемых поликристаллических алмазах, отрицательно сказывающихся на механической прочности изготавливаемого инструмента. Кроме того, обработку полученных агрегатов ведут смесью азотной и плавиковой кислот, взятых в соотношениях 3:1, при температуре кипения этой смеси.

Задачей изобретения является получение поликристаллического алмаза заданной формы с повышенной однородностью тонкозернистой микроструктуры, упрощение процесса и увеличение срока службы камеры.

Это достигается тем, что в известном способе получения поликристаллических алмазов заданной формы, включающем воздействие высокими давлением и температурой на углеродсодержащий материал, окруженный оболочкой из порошкообразного катализатора, содержащего карбид вольфрама, карбид титана и кобальт, катализатор дополнительно содержит порошки циркония и борида титана, при следующем соотношении компонентов, мас. карбид вольфрама 60-70; карбид титана 10-12; кобальт 2,4-2,6; цирконий 15-21; борид титана 2,4-2,6, при этом нагрев до рабочей температуры ведут со скоростью 1400-1600оС/с, выдерживают 1-2 с, а обработку смесью кислот ведут при комнатной температуре.

Предлагаемый способ отличается от известного тем, что введение в порошкообразный катализатор металлического циркония в количестве 15-21 мас. обеспечивает диспергирование частиц углеродного материала до 1 мкм и менее, что способствует ограничению проникновения примесей металла-катализатора.

В случае, если циркония взято более чем 21 мас. то это приводит к резкому замедлению процесса алмазообразования, что в конечном итоге препятствует полному переходу углеграфитового материала в алмаз.

В случае, если циркония взято менее чем 15 мас. то это приводит к увеличению зернистости кристаллов алмаза в агрегате. Кроме того, высокая активность циркония способствует при высокой температуре поглощению газов, которыми порошкообразный катализатор сильно загрязнен. Введение порошка металлического циркония в количестве 15-12 мас. в катализатор повышает однородность тонкозернистой микроструктуры и уменьшает размер зерна.

Введение в порошкообразный катализатор борида титана в количестве 2,4-2,6 мас. способствует уменьшению усадки спеченного порошкообразного катализатора и приводит к повышению пластичности сплава. Введение в катализатор борида титана в количестве более максимального приводит к резкому выбросу реакционной смеси из ячейки.

Введение в катализатор борида титана в количестве менее 2,4 мас. приводит к повышению жесткости среды, передающей давление, и образованию трещин и механических дефектов в получаемых поликристаллических алмазах.

Введение в катализатор порошков борида титана в количестве 2,4-2,6 мас. и циркония в количестве 15-21 мас. позволяет выделять полученные поликристаллические алмазы химическим путем в смесях азотной и плавиковой кислот, взятых в соотношении 3:1, при комнатной температуре в течение 5-7 мин без нагрева.

Используемые соотношения компонентов катализатора и режим синтеза поликристаллических алмазов позволяют увеличить срок службы камер высокого давления по сравнению с прототипом вдвое.

П р и м е р 1. В камеру высокого давления и температуры помещают контейнер из литографского камня, в который помещают графитовый материал марки МПГ-6 в виде пластин размером 4,0х4,0х3,0, окружают со всех сторон порошкообразной каталитической смесью зернистостью 2 мкм следующего состава, мас. карбид вольфрама 66, карбид титана 12; кобальт 2,5; борид титана 2,5; цирконий 17, в количестве 750 мг. На оснащенный таким образом контейнер воздействуют давлением 8,0 ГПа, а затем поднимают температуру со скоростью 1500оС/с до рабочей температуры 1800оС. При этой температуре выдерживают 1,0 с, затем температуру снижают до комнатной, а давление до атмосферного.

Полученный продукт, представляющий собой спек металла-катализатора и поликристаллического алмаза, помещают в полимерную емкость, заливают смесью азотной и плавиковой кислот в объемном отношении 3:1 и ведут обработку при комнатной температуре в течение 5-6 мин.

Выделенный поликристаллический алмазный материал в виде пластины 3,5х3,5х2,5 исследовался на электронном микроскопе "Стереоскан 150". Электронномикроскопические исследования показали, что поликристаллическая пластина не имела трещин, крупных включений материала катализатора, имела однородную по сечению структуру с размерами зерна 1 мкм и ниже.

Включения материала катализатора в поликристаллической алмазной пластине распределены равномерно и имеют размеры, сопоставимые с размерами зерен алмаза. Такая пластина может быть использована как режущий инструмент для чистовой обработки деталей в часовой промышленности (9-10 класс чистоты).

П р и м е р 2. Все, как в примере 1, только пиролитический графитовый материал марки УПВ 1 в виде пластины размером 4,5х4,5х3,0 окружают со всех сторон порошкообразной каталитической смесью зернистостью 1 мкм, следующего состава, мас. карбид вольфрама 60; карбид титана 14; кобальт 2,4; борид титана 2,6; цирконий 21.

На оснащенный таким образом контейнер воздействуют рабочим давлением, затем поднимают температуру со скоростью 1400оС/с до 1900оС. При этой температуре выдерживают 2 с, затем температуру снижают до комнатной, а давление до атмосферного. Обработку кислотами ведут 5-7 мин при комнатной температуре.

Полученная при этих условиях поликристаллическая алмазная пластина размером 4х4х42,5, имеет однородную по всему объему мелкозернистую структуру, не содержит пор и трещин.

Данный поликристаллический алмазный материал может быть использован как режущий инструмент на финишных операциях без его дополнительной механической обработки (Rz=0,32 мкм).

П р и м е р 3. Все, как в примере 1, только графитовый материал марки ГАМ в виде фильеры диаметром 4 мм, высотой 3 мм, с отверстием в 1 мм окружают со всех сторон порошкообразной каталитической смесью зернистостью 1,5 мкм следующего состава, мас. карбид вольфрама 70; карбид титана 10; кобальт 2,6; борид титана 2,4; цирконий 15. На оснащенный таким образом контейнер воздействуют рабочим давлением, затем поднимают температуру со скоростью 1600оС/c до рабочей температуры 1800оС. При этой температуре выдерживают 1,5 с, затем температуру снижают до комнатной, а давление до атмосферного. Обработку кислотой ведут 5-7 мин при комнатной температуре.

Полученная при этих условиях поликристаллическая алмазная фильера диаметром 3,5 мм и высотой 2,5 мм, с отверстием 0,8 мм имеет однородную по всему объему мелкозернистую структуру, не содержит трещин. Полученная поликристаллическая алмазная фильера может быть без дополнительной механической обработки использована в кабельной и других отраслях промышленности.

П р и м е р 4. Все, как в примере 1, только графитовый материал марки МПГ 6 в виде пластины 4,0х4,0х3,0 окружают со всех сторон порошкообразной каталитической смесью зернистостью 2 мкм следующего состава, мас. карбид вольфрама 66; карбид титана 12; кобальт 2,3; борид титана 2,7; цирконий 17.

На оснащенный таким образом контейнер воздействуют давлением 8,0 ГПа, а затем поднимают температуру со скоростью 1500оС/с до 1800оС. При подъеме температуры происходит резкий выброс реакционной смеси из ячейки ("взрыв"). В примере борида титана взято более максимального значения, указанного в формуле.

П р и м е р 5. Все, как в примере 1, только графитовый материал марки МПГ 6 в виде пластины 4,0х4,0х3,0 окружают со всех сторон порошкообразной каталитической смесью зернистостью 2 мк м, следующего состава, мас. карбид вольфрама 62; карбид титана 11; кобальт 2,5; борид титана 2,5; цирконий 22.

На оснащенный таким образом контейнер воздействуют рабочим давлением, затем поднимают температуру со скоростью 1600оС/с до рабочей температуры 1600-1900оС. При этой температуре выдерживают 2 с, затем температуру снижают до комнатной, а давление до атмосферного.

Выделенная пластина осталась графитовой, перехода графита в алмаз не произошло.

В примере циркония взято более максимального значения, указанного в формуле.

Использование предлагаемого способа получения поликристаллических алмазов заданной формы обеспечивает по сравнению с существующими способами следующие преимущества.

Повышение однородности тонкозернистой микроструктуры. При исследовании на электронном микроскопе выявлено, что поликристаллы не имеют пор и трещин, практически отсутствуют границы между зернами.

Увеличение срока службы камер высокого давления (по сравнению с прототипом вдвое).

Упрощение процесса синтеза за счет исключения обработки кипящими смесями кислот, связанной с выделениями вредных паров кислот, и с использованием специальной посуды.

Кроме того, способ позволяет получать алмазные поликристаллы с высокой чистотой поверхности, что исключает в дальнейшем механическую обработку поверхности.

Повышение выхода годных поликристаллических алмазов. На 100 образцов выход годных составляет 95.

Формула изобретения

Способ получения поликристаллических алмазов заданной формы, включающий воздействие высокими давалением и температурой на углеродсодержащий материал, окруженный оболочкой из порошкообразного катализатора, содержащего карбиды вольфрама и титана и кобальт, с последующей обработкой смесью азотной и плавиковой кислот, отличающийся тем, что катализатор дополнительно содержит порошки циркония и борида титана при следующем соотношении компонентов, мас.

Карбид вольфрама 60 70 Карбид титана 10 12 Кобальт 2,4 2,6 Цирконий 15 21 Борид титана 2,4 2,6 при этом нагрев до рабочей температуры ведут со скоростью 1400 1600 град/с, выдерживают 1 2 с, а обработку смесью кислот ведут при комнатной температуре.



 

Похожие патенты:

Изобретение относится к области производства мелкодисперсных алмазов или других алмазоподобных материалов при детонации конденсированных взрывчатых веществ, а более конкретно к процессам автоматизации проведения взрывов во взрывных камерах, в которых осуществляется локализация взрывов при массовом подрыве зарядов взрывчатых веществ (ВВ)

Изобретение относится к получению алмаза при высоких давлениях и температурах и может быть использовано, в частности, для получения сырья для шлиф- и микропорошков алмаза

Изобретение относится к созданию искусственных материалов, в частности к получению искусственных алмазов

Изобретение относится к химической технологии получения сверхтвердых материалов, а именно искусственных алмазов или алмазоподобных веществ в детонационной волне, в результате непосредственного использования высоких давлений и температур, развивающихся при детонации конденсированных взрывчатых веществ (ВВ)

Изобретение относится к неорганической химии углерода, а именно к кубической модификации углерода, обладающей свойствами сверхтвердого материала и способу его получения, и может найти применение при получении различных композиционных покрытий в качестве добавки, повышающей антифрикционные характеристики смазочных составов, как материал для газо-жидкостной хроматографии и т.д

Изобретение относится к углеродным материалам, полученным при взрывчатом превращении конденсированных взрывчатых веществ и может быть использован для получения высокодисперсных ультра- и квазидисперсных алмазных порошков, поли- и монокристаллов алмаза, алмазоподобных пленок и покрытий, полупроводников и сверхпроводящих материалов, смазочных и абразивных материалов, материалов, поглощающих электромагнитное излучение, адсорбентов, биологически активных сред, а также в качестве наполнителей полимерных материалов

Изобретение относится к области неорганической химии углерода, конкретно к ультрадисперсным углеродным материалам, содержащим алмазы, и может быть использовано для получения композиционных материалов, сорбентов и других материалов с включениями алмазных частиц

Изобретение относится к взрывному синтезу алмазов и может быть использовано для синтеза алмаза непосредственно в процессе детонации углеродсодержащего взрывчатого вещества с отрицательным кислородным балансом (BB) и дальнейшего разлета продуктов взрыва

Изобретение относится к технологии приготовления шихты в процессе производства сверхтвердых материалов (СТМ), в частности алмаза, и может быть использовано на предприятиях, производящих и/или применяющих искусственные алмазы и алмазный инструмент из них

Изобретение относится к способам синтеза монокристаллов алмаза (МКА), в том числе с полупроводниковыми свойствами

Изобретение относится к технике для производства сверхтвердых материалов (СТМ), например алмазов, путем синтеза

Изобретение относится к полиморфным соединениям углерода и может быть использовано в качестве молекулярного углеродного соединения при производстве новых конструкционных и химических материалов
Изобретение относится к получению кристаллов алмаза и других сверхтвердых материалов

Изобретение относится к технологии получения синтетических алмазов, конкретно к способам выделения синтетических алмазов, полученных в детонационной волне
Изобретение относится к технологии кристаллов на полиморфной основе и может быть использовано для промышленного производства кристаллов большой плотности в ювелирной промышленности, а также других областях техники

Изобретение относится к гидрометаллургии цветных металлов
Наверх