Способ получения монокристаллов селеногаллата серебра

 

Изобретение относится к технологии получения тройных полупроводниковых соединений типа AIBIIICV2I и промышленно применимо при получении монокристаллов селеногаллата серебра, которые широко используются в производстве изделий нелинейной оптики. Задачей изобретения является получение высококачественных монокристаллов селеногаллата серебра больших физических размеров (диаметром до 40 мм, длиной до 100 мм) со следующими техническими характеристиками: диапазон пропускания 0,725 - 18,0 мкм; ширина запрещенной зоны 1,83 эВ; угол фазового согласования 46 - 48 град. Сущность изобретения: способ получения монокристалла селеногаллата серебра основан на получении монокристаллов направленной кристаллизации расплава при градиенте температуры вблизи фронта кристаллизации, при этом направленную кристаллизацию проводят вытягиванием монокристалла на затравку из расплава в тигле при градиенте температуры 170 - 190 oC/см и постоянстве стехиометрического состава выращиваемого монокристалла со скоростью 3 - 4 мм/ч. 1 табл.

Изобретение относится к технологии получения тройных полупроводниковых соединений типа AIBIIIC2VI и может быть использовано при получении мронокристаллов селеногаллата серебра, которые широко используются в производстве изделий нелинейной оптики (мощные технологические лазеры и др.).

Известен способ получения монокристаллов селеногаллата серебра направленной кристаллизацией расплава при градиенте температуры вблизи фронта кристаллизации 30оС/см и скорости выращивания 3-7 мм/сут [1] Выращивание проводили методом Бриджена-Стокбаргера в кварцевых ампулах диаметром 3-5 см на затравочном кристалле, ориентированном вдоль направления (001).

Недостатками способа являются низкая скорость выращивания, высокая неоднородность монокристаллов, сильное отклонение от стехиометрического состава AgGaSe2 в сторону избытка Ga2Se3. С целью гомогенизации состава и устранения центров рассеивания кристаллы подвергались отжигу в парах Ag2Se и Ag2Se-Se при 750оС в течение 30 сут.

Задача изобретения получение высококачественных монокристаллов селеногаллата серебра больших физических размеров с хорошей однородностью и воспроизводимостью свойств и высоким процентом выхода годных монокристаллов.

Для этого направленную кристаллизацию проводят вытягиванием монокристалла на затравку из расплава в тигле при градиенте температуры 170-190оС/см со скоростью 3-4 мм/ч при постоянстве стехиометрического состава выращиваемого монокристалла.

При градиентах температуры менее 170оС/см снижается устойчивость роста монокристалла и уменьшается выход годного до 20% при градиентах температуры более 190оС/см также снижается выход годного за счет увеличения оптической неоднородности монокристаллов.

Постоянство стехиометрического состава выращиваемого кристалла обеспечивается увеличением градиента температуры на 3-5оС на каждый сантиметр длины.

При скорости увеличения градиента температуры менее 3оС/см длины монокристалла уменьшается скорость кристаллизации и соответствернно падает производительность процесса, при скорости увеличения градиента температуры более 5оС/см снижается выход монокристаллов за счет возрастания брака по растрескиванию слитков.

При скорости вытягивания менее 3 мм/ч снижается производительность процесса и возрастает неоднородность монокристаллов, при скорости вытягивания более 4 мм/ч снижается выход годных монокристаллов за счет растрескивания слитков.

П р и м е р. Синтез селеногаллата серебра проводят в тигле из пиролитического нитрида бора. Загрузку компонентов галлия, серебра и селена рассчитывают из стехиометрического соотношения их в соединении. В тигель загружают 161 г серебра чистотой 99,9999, 104 г галлия и 239 г селена. Тигель с загруженными компонентами помещают в камеру установки выращивания монокристаллов и нагревают до 1035-1045оС в течение 2 ч. Камеру установки предварительно откачивают до остаточного давления 10-2 мм рт.ст. и наполняют инертным газом до давления 40 атм. Указанные условия в камере выдерживают в течение 15 ч, что обеспечивает получение соединения высокой гомогенности. Полученный расплав соединения охлаждают со скоростью 100оС/ч до 700оС, после чего скорость охлаждения увеличивают до 150-200оС и охлаждают до комнатной температуры.

Полученный материал извлекают из тигля и контролируют рентгеновским методом фазовый состав. Синтезированный однофазный селеногаллат серебра вновь помещают в тигель установки выращивания монокристаллов. На верхнем штоке закрепляют затравку, а в тигель с загруженным селеногаллатом серебра помещают также 150 г оксида бора, который после расплавления создает на поверхности расплава в тигле слой толщиной 15 мм. Загруженные компоненты в тигле расплавляют и устанавливают температуру поверхности расплава на 10-12оС выше температуры плавления соединения, выдерживают расплав для гомогенизации при указанных условиях в течение 30-40 мин и проводят затравливание. После затравливания вытягивают монокристалл на затравку из расплава в тигле при осевом градиенте температуры в кристалле 170-190оС/см с увеличением градиента температуры на 3-5оС на каждый сантиметр длины вытягиваемого монокристалла. Скорость вытягивания монокристалла 3-4 мм/ч. Монокристалл выращивают в атмосфере инертного газа при давлении 8-12 атм.

Получают монокристалл селеногаллата серебра AgGaSe2 диаметром 40 мм и высотой 75 мм, стехиометрического состава с шириной запрещенной зоны Е 1,83 эВ, диапазоном оптического пропускания = 0,7-18,0 мкм, углом фазового согласования =47 град, плотностью D 450 кг/мм2.

Режимы экспериментов реализации способа приведены в таблице.

Как видно из таблицы, предлагаемый способ позволяет получить высококачественные монокристаллы селеногаллата серебра, отличающиеся большими физическими размерами, высокой однородностью свойств и хорошими оптическими характеристиками, что невозможно получить в настоящее время другими способами.

Способ прошел испытание. В настоящее время монокристаллы селеногаллата серебра выпускаются опытными партиями для использования в производстве мощных технологических лазеров.

Формула изобретения

Способ получения монокристаллов селеногаллата серебра направленной кристаллизацией расплава при градиенте температуры вблизи фронта кристаллизации, отличающийся тем, что направленную кристаллизацию проводят вытягиванием монокристалла на затравку из расплава в тигле при градиенте температуры 170 190 град/см и постоянстве стехиометрического состава выращиваемого монокристалла со скоростью 3 4 мм/ч.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике для регистрации и спектрометрии ионизирующих излучений, в частности к сцинтиляционным материалам

Изобретение относится к усовершенствованному тиглю из нитрида бора и способу его получения

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при выращивании монокристаллов кремния по методу Чохральского
Изобретение относится к технологии выращивания тугоплавких кристаллов сапфира, рубина, граната и т.п

Изобретение относится к получению полупроводниковых монокристаллов

Изобретение относится к получению полупроводников

Изобретение относится к электроприводу установки для выращивания монокристаллов по способу Чохральского, содержащим механизм вращения штока, электродвигатель, соединенный с червяком червячной пары, червячное колесо которой охватывает выходной вал механизма вращения штока, механизм поступательного движения штока, включающий электродвигатель, червячную пару, червячное колесо которой одновременно является гайкой винтовой пары, ходовой винт которой передает поступательное движение штоку

Изобретение относится к технологии выращивания кристаллов из расплава при воздействии ультразвуком

Изобретение относится к технологии выращивания кристаллов из расплава при воздействии ультразвуком

Изобретение относится к конденсаторостроению и может быть использовано при разработке конденсаторов различных устройств радиоэлектроники, а также конденсаторов сглаживания пиковых перегрузок сетей электропитания

Изобретение относится к выращиванию монокристаллов корунда сине-фиолетовой гаммы окраски и может быть использовано в ювелирной промышленности

Изобретение относится к выращиванию монокристаллов корунда голубовато-зеленой гаммы окраски и может быть использовано в ювелирной промышленности

Изобретение относится к химической технологии и может быть использовано при производстве аморфных материалов в макроскопическом объеме

Изобретение относится к неорганической химии, и может быть использовано для получения монокристаллов тугоплавких материалов методом направленной кристаллизации

Изобретение относится к производству монокристаллов тугоплавких веществ в форме пластин

Изобретение относится к технологии выращивания кристаллов из низкотемпературных водных растворов и может быть использовано при выращивании различных кристаллов

Изобретение относится к области получения крупных монокристаллов сверхпроводников из расплава системы Bi Sr Ca Cu O и может быть использовано в качестве оптических линий задержки в видимом и инфракрасном диапазонах, как электрические контакты и прерыватели для работы при низких температурах

Изобретение относится к области выращивания монокристаллов из расплава, преимущественно методом направленной кристаллизации

Изобретение относится к получению сложных полупроводниковых соединений типа A3B5 и A4B6
Наверх