Способ измерения количества тепла с отходящими газами в газоходе

 

Способ измерения количества тепла с отходящими газами в газоходе может быть применен и в металлургической, химико-технологической, нефтехимической и других отраслях промышленности. Способ основан на методе определения температуры и коэффициента теплоотдачи транспортируемого газа стенке газохода бесконтактным способом путем решения обратной задачи теплопроводности и установления зависимости критерия Нуссельта от критерий подобия Рейнольдса и Прандля. Приводится формула для расчета тепла с отходящими газами в газоходе. 1 ил.

Изобретение относится к контролю тепловых процессов в металлургической, нефтехимической, химико-технологической и других отраслях промышленности.

Известен способ измерения мощности тепловых потерь с отходящими газами, заключающийся в измерении температуры газа на входе и выходе измерительного участка газохода и вычислении на основе этих данных мощности тепловых потерь [1] Результаты расчета по предложенной в известном способе математической зависимости без учета теплофизических параметров (теплоемкость, плотность, коэффициент теплопередачи) транспортируемого газа и его скорости, а также площади поперечного сечения газохода могут выходить за пределы реальных потерь с большей вероятностью.

Наиболее близким по технической сущности и достигаемому положительному эффекту является способ измерения мощности тепловых потерь с отходящими из электропечи газами, включающий измерение температуры и количества отходящих газов, причем мощность тепловых потерь с отходящими газами определяют по величине мощности тепловых потерь с частью отходящих газов, пропускаемой через байбас [2] Ближайший аналог обладает высокой точностью, но сложна его реализация: способ требует установки расходомера в газоходе, сооружения обводного канала (байбаса) с дополнительным расходомеров в нем, а также установленными последовательно нагревателем и охладителем.

Однако мощность тепловых потерь с отходящими газами может быть измерена с такой же объективностью, что и ближайший аналог, но более простым и осуществляемым простыми средствами способом.

На чертеже представлена блок-схема устройства для измерения количества тепла с отходящими газами в газоходе, реализующего предложенный способ.

На чертеже указаны газоход 1; теплоотводящие элементы 2 и 3, изготовленные из материалов с различными коэффициентами теплопроводности; теплоизоляция 4 для создания одномерного теплового потока в теплоотводящих элементах 2 и 3; термопары 5 и 6 для измерения температуры наружной стенки газохода 1 под теплоотводящими элементами соответственно 2 и 3; термопары 7 и 8 для определения тепловых потоков q2 и q3 по теплоотводящим элементам 2 и 3; термопара 9 для измерения температуры внешней стенки газохода 1 вне тепловой изоляции 4; вычислительный блок 10 и указатель 11, вход которого соединен с выходом вычислительного блока 10, входы которого соединены с выходами всех термопар.

Устройство работает следующим образом.

Величина конвективной теплопередачи транспортируемого газа в практических расчетах может быть найдена с помощью известной формулы Ньютона. Применительно к теплоотводящим элементам 2 и 3 она имеет вид q2= (T-T5); (1) q3= (T-T6); (2) где q2 и q3 плотности тепловых потоков; определяются по величинам температур, измеренным в заданных сечениях теплоотводящих элементов 2 и 3 термопарами соответственно 7 и 8, из решения обратной задачи теплопроводности (см. например, Алифанов О.М. Идентификация процессов теплообмена летательных аппаратов. М. Машиностроение, 1979) независимо от характера нестационарности теплового режима; Т5 и Т6- температура наружной стенки газохода 1 в местах установки теплоотводящих элементов соответственно 2 и 3; по величине они отличаются, т.к. тепловые потоки q2 и q3, отводимые от газохода 1 различны ввиду их различных коэффициентов теплопроводности; Т температура транспортируемого газа; коэффициент теплоотдачи от наружной поверхности газохода 1 торцевой поверхности теплоотводящих элементов 2 и 3; зависит от ряда факторов таких, как скорость транспортируемого газа, размеров обтекаемого тела (газохода), теплопроводность, вязкость, теплоемкость и т.п. газа.

Решая систему уравнений (1) и (2), находим интересующие параметры

При вынужденном движении транспортируемого газа, когда свободная конвекция не развивается и критерий подобия Грасгофа не является определяющим, конвективный теплообмен может быть описан функциональной зависимостью критерия подобия Нуссельта NU, с одной стороны, и критериями Рейнольдса Rе и Прандля Pr, с другой, в виде

где К коэффициент пропорциональности;
Ср, , l,v и r удельная теплоемкость, динамический коэффициент вязкости, коэффициент теплопроводности, скорость и плотность транспортируемого газа соответственно;
l характеристический линейный размер поверхности теплообмена; для газоходов круглого сечения это диаметр, а для некруглого сечения - эквивалентный диаметр

где F и P поперечное сечение и периметр газохода.

В первом сомножителе правой части функциональной зависимости (5) из четырех параметров , v, l и m три r, и l являются независимыми, т.е. m 4 3 1, а во втором сомножителе из трех параметров m, Ср и l независимыми являются два m и Ср, т.е. n 3 2 1.

Таким образом, зависимость (5) может быть записана в виде
a = KvCp.
Умножив обе части последнего выражения на разность температур транспортируемого газа Т и стенки газохода вне тепловой изоляции теплоотводящих элементов Тc, а также на площадь поперечного сечения F газохода и время , получим

где и представляет собой количество тепла Q с отходящими газами в газоходе. Искомая зависимость запишется окончательно в виде
о


Формула изобретения

Способ измерения количества тепла с отходящими газами в газоходе, включающий измерение температуры транспортируемого газа, отличающийся тем, что измеряют тепловые потоки по двум теплоотводящим элементам, изготовленным из материалов с различными коэффициентами теплопроводности, установленным перпендикулярно к поверхности газохода в двух различных точках по его периметру и окруженным теплоизоляцией, измеряют температуру стенки газохода под теплоотводящими элементами и вне указанной тепловой изоляции, температуру и коэффициент теплоотдачи транспортируемым газом газоходу и количество тепла с отходящими газами в единицу времени определяют из математического выражения

где Q количество тепла с отходящими газами;
D эквивалентный диаметр газохода;
коэффициент теплоотдачи транспортируемым газом газоходу;
T температура транспортируемого газа;
Tc температура стенки газохода вне тепловой изоляции теплоотводящих элементов;
t время.

РИСУНКИ

Рисунок 1

NF4A Восстановление действия патента Российской Федерации на изобретение

Номер и год публикации бюллетеня: 26-2003

Извещение опубликовано: 20.09.2003        




 

Похожие патенты:

Изобретение относится к измерительной технике и позволяет расширить функциональные возможности устройства для измерения количества тепла на теплотрассах и повысить точность измерения тепла

Изобретение относится к области калориметрии, в частности к способу измерения импульсных тепловыделений

Изобретение относится к устройствам регистрации импульсных тепловыделений и может найти применение в приборостроении, материаловедении, химической физике и других областях науки и техники

Изобретение относится к приборостроению и может быть использовано для измерения расхода тепла в тепловых сетях, содержащих центробежные электронасосы

Изобретение относится к теплофизическим приборам, предназначенным для регистрации термокинетики и полных тепловых эффектов процессов, характеризующихся быстрым и интенсивным тепловыделением в начальной стадии и медленным и слабым - в конечной стадии, таких, например, как растворение, анионная полимеризация, нитрование целлюлозы и т.д

Изобретение относится к теплотехнике и может быть использовано для измерения зависимости градиента температур на поверхности от температуры поверхности

Изобретение относится к области централизованного теплоснабжения жилых, коммунальных и производственных объектов

Изобретение относится к области централизованного теплоснабжения жилых, коммунальных и производственных объектов

Изобретение относится к медицине, эндокрионологии
Изобретение относится к медицине, функциональной диагностике

Изобретение относится к теплофизическим измерениям, в частности к средствам измерения локальных тепловых потоков неоднородных по плотности через наружную поверхность трубы, например, для исследования теплоотдачи при существенном изменении условий внешнего обтекания трубы

Изобретение относится к теплофизическим измерениям, в частности к средствам измерения локальных тепловых потоков неоднородных по плотности через наружную поверхность трубы, например, для исследования теплоотдачи при существенном изменении условий внешнего обтекания трубы

Изобретение относится к теплофизическим измерениям и может быть использовано для прецизионных измерений теплоты сгорания газообразных видов топлива

Изобретение относится к области измерений, в частности к области измерений параметров потоков жидких и сыпучих веществ /расход тепла и массы/

Изобретение относится к области измерений, в частности к области измерений параметров потоков жидких и сыпучих веществ /расход тепла и массы/
Наверх