Способ обработки отработанного полимерного бурового раствора

 

Использование: для очистки, обезвреживания и утилизации отработанных промышленных жидкостей, в частности полимерных буровых растворов. Сущность изобретения: способ включает введение в раствор неорганического коагулянта, отделение осадка и обработку осадка раствором щелочи, причем количество неорганического коагулянта и щелочи берут из расчета (0,3-0,5) и (0,1-0,15) мас. частей соответственно на 1 мас.часть полимера в буровом растворе. 2 табл.

Изобретение относится к области очистки, обезвреживания и утилизации отработанных промышленных жидкостей, в частности полимерных буровых растворов.

Известен способ обработки отработанного бурового раствора в противоточном кожухо-трубном теплообменнике с последующим отделением и извлечением твердой фазы, органических соединений и водорастворимых солей (1). Данный способ предусматривает возможность вторичного использования отдельных компонентов отработанного бурового раствора, однако недостатками его являются сложность и необходимость использования специального оборудования.

Известен также способ обработки отработанного бурового раствора путем введения в него флокулянтов полиэлектролитов, что обеспечивает разделение суспензии на жидкую фазу и осадок. Жидкая фаза используется повторно или сбрасывается, а осадок после дополнительной обработки захоранивается (2).

Недостатком данного способа является то, что он неэффективен в случае обработки отработанного полимерного бурового раствора. Это объясняется тем, что дисперсная фаза последнего, представленная, в основном, высокомолекулярными частицами, устойчива к действию флокулянтов одной с ними природы полиакриламида, четвертичных аминных полимеров и их смесей.

Наиболее близким техническими решением является способ, включающий введение в отработанный буровой раствор неорганического коагулянта, в качестве которого наиболее часто берут сульфат алюминия или железа, отделение осадка фильтрованием или центрифугированием и химическую обработку осадка, например обработку отверждающими составами (3).

Недостатком способа является то, что он не предусматривает возможность вторичного использования осадка.

Цель изобретения вторичное использование высокомолекулярного компонента отработанного бурового раствора.

Поставленная цель достигается тем, что осадок обрабатывают раствором щелочи, причем количество неорганического коагулянта и щелочи берут из расчета (0,3-0,5) и (0,1-0,15) мас.частей, соответственно, на 1 мас.часть полимера в буровом растворе.

При обработке отработанного полимерного бурового раствора, например соленасыщенного раствора карбоксиметилцеллюлозы (КМЦ), неорганическим коагулянтом сернокислым алюминием в результате реакции образуется алюминиевая соль КМЦ, представляющая собой не растворимое в воде вещество, хорошо отделяющееся от жидкой фазы отстаиванием, фильтрованием или центрифугированием: Na-КМЦ+Al3+__ Al-КМЦ+Na Это вещество представляет собой гель с влажностью около 95% После обработки геля щелочью, например гидроксидом натрия, образуется хорошо растворимая в воде натриевая соль КМЦ, которая может быть вторично использована в буровом растворе: Al-КМЦ + NaOH__Na-КМЦ+Al(OH)3 По аналогичному механизму идет взаимодействие отработанного полимерного бурового раствора с другими неорганическими коагулянтами и щелочными веществами.

Пример 1. Отработанный полимерный соленасыщенный буровой раствор на основе КМЦ скважины Р-11 Ковыктинского ГКМ отбирают из приемной емкости (амбара) в процессе циркуляции жидкости в количестве 1,1 кг. Отделяют 100 г жидкости и определяют антронным методом содержание КМЦ (Сo) в отработанном растворе. Сo 1,9 мас. 1000 г отработанного раствора помещают в химический стакан вместимостью 2 л, добавляют сернокислый алюминий, количество которого берут из расчета 0,25 г на 1 г КМЦ в буровом растворе, т.е. всего 4,75 г, и перемешивают 30 мин с частотой вращения 1-2 с-1. Затем содержимое стакана центрифугируют при 66,6 с-1 в течение 15 мин, после чего отделяют осадок. В жидком центрифугате находят антронным методом остаточное содержание КМЦ (C1 0,6 мас.), и рассчитывают эффективность осаждения полимера (Э) по формуле: Помещают осадок целиком в химический стакан вместимостью 1,5 л, добавляют гидроксид натрия из расчета 0,08 г на 1 г КМЦ в буровом растворе, т.е. всего 1,52 г, хлористый натрий 260 г и воду 482 г таким образом, чтобы получить в итоге 1000 г раствора, все перемешивают с частотой вращения 2 с-1 в течение 2 ч, и измеряют параметры восстановленного полимерного соленасыщенного бурового раствора: 1172; УВ 39 с; Ф30 полн; pН 12,3.

Результаты обработки вышеуказанным способом отработанных полимерных буровых растворов на основе КМЦ приведены в табл. 1 (см. примеры 2-5). Здесь показаны также свойства восстановленных буровых растворов. Из этих данных видно, что эффективность способа наиболее велика при массовом соотношении КМЦ: сернокислый алюминий: гидроксид натрия, равном 1:(0,3-0,5):(0,1-0,15) (примеры 2-4). При указанных соотношениях, найденных экспериментальным путем, из раствора извлекается для повторного использования 8,5-8,9% высокомолекуляирного вещества, которое при введении в рассол хлористого натрия обеспечивает получение восстановленного полимерного соленасыщенного бурового раствора с приемлемыми технологическими параметрами. При уменьшении содержания осадителя и щелочи до 0,25 и 0,08 мас.ч. соответственно на 1 мас.ч. полимера в буровом растворе (пример 1) эффективность обработки снижается и свойства восстановленного полимерного раствора значительно ухудшаются. Повышение же содержания осадителя и щелочи соответственно до 0,6 и 0,18 мас.ч. на 1 мас. ч. полимера (пример 5) не влечет за собой соответствующего повышения эффективности способа и поэтому является неэкономичным.

Проведенными исследованиями установлено, что положительный эффект заявляемого изобретения достигается и в случае обработки данным способом других типов полимерных отработанных буровых растворов растворов на основе карбоксиметилоксиэтилцеллюлозы (КМОВЦ) и лигноцела (лигноцел полимерный реагент, получаемый путем химической модификации шламлигнина), а также при использовании в заявляемом способе другого типа щелочи гидроксида калия и неорганического коагулянта треххлористого железа. Подтверждением этому являются данные табл.2.

Пример обработки отработанного полимерного бурового раствора на скважине. Перед обработкой отработанной жидкости готовят в раздельных емкостях концентрированные растворы сернокислого алюминия (24-26 мас.) и гидроксида натрия (40-50 мас.) в необходимых количествах. Вводят раствор сернокислого алюминия в отработанный буровой раствор, и тщательно перемешивают жидкости с помощью бурового или вспомогательного насоса. С помощью центрифуги или гидроциклонной установки, входящих в комплект оборудования для приготовления буровых растворов, отделяют осадок и помещают его в емкость, оборудованную перемешивающим устройством (глиномешалка, ФСМ и т.п.). Обрабатывают осадок раствором гидроксида натрия и перемешивают до полного растворения высокомолекулярного вещества. После этого вводят полученное высокомолекулярное вещество в насыщенный раствор хлористого натрия, и после перемешивания получают полимерный соленасыщенный буровой раствор.

Существенным отличием предлагаемого способа обработки отработанного полимерного бурового раствора от известных в научной и патентной литературе технических решений является то, что осадок обрабатывают щелочью, причем количество щелочи, как и количество неорганического коагулянта, берут в определенном соотношении к количеству полимера в буровом растворе. Это обеспечивает возможность извлечения и вторичного использования дефицитного и дорогостоящего высокомолекулярного компонента бурового раствора после обработки последнего в скважине.

Формула изобретения

Способ обработки отработанного полимерного бурового раствора, включающий введение в раствор неорганического коагулянта, отделение осадка и его химическую обработку, отличающийся тем, что осадок обрабатывают раствором щелочи при массовом соотношении полимер неорганический коагулянт щелочь соответственно 1 0,3 0,5 0,1 0,15.



 

Похожие патенты:

Изобретение относится к способу удаления нефтесодержащих загрязнений и других углеводородов из подпочвенных участков, имеющих грунтовые воды, и участков, расположенных поблизости от них

Изобретение относится к теплоэнергетике и может быть использовано для предотвращения накипеобразования на поверхности паровых и водогрейных котлов

Изобретение относится к технике обеззараживания воды от патогенных микроорганизмов и может найти применение в процессах водоподготовки, в коммунальных службах, очистке промышленных и бытовых стоков, биотехнологии, медицине, дезинфекции воды в плавательных бассейнах и др

Изобретение относится к области очистки промышленно-дождевых сточных вод сорбцией и может быть использовано на очистных сооружениях промышленных предприятий
Изобретение относится к очистке воды от нефти и нефтепродуктов

Изобретение относится к способам осветления суспензий, в частности суспензий газоочистки алюминиевого производства, и может быть использовано в химической и металлургической промышленности

Изобретение относится к способу получения не подвергавшихся сдвиговой деформации высокомолекулярных высокоразветв- ленных водорастворимых полимеров, используемых в качестве флокулянтов

Изобретение относится к цветной металлургии и может быть использовано для разделения пульп после флотации вольфрам-молибденовых руд

Изобретение относится к осаждению твердых взвесей, в частности к осветлению оборотной воды флотационного обогащения угля, и может быть использовано при производстве цветных металлов и в химической промышленности

Изобретение относится к способам осветления суспензий, в частности суспензий газоочистки алюминиевого производства, и может быть использовано в химической и металлургической промышленности

Изобретение относится к обработке вод, а именно к способам классификации, сгущения и выделения частиц и может быть использовано при обогащении полезных ископаемых для осветления оборотных вод и при очистке промышленных, хозпитьевых и сточных вод
Наверх