Способ управления двухскоростным асинхронным двигателем (варианты)

 

Использование: в лифтовых установках. Сущность изобретения: в способе управления двухскоростным асинхронном двигателе перед торможением с высокой скорости на низкую на высокоскоростной обмотке обеспечивает обеспечивают полное сетевое напряжение, измеряют момент двигателя, снимают напряжение с высокоскоростной обмотки и подают на низкоскоростную обмотку напряжение. Изменяют напряжение низкоскоростной обмотки по заранее выбранному в соответствии с измеренным моментом закону до скорости, соответствующей установившемуся режиму, а затем тормозят двигатель с помощью механического тормоза до нуля. 2 с.п.ф-лы, 4 ил.

Изобретение относится к электротехнике и может быть использовано в электроприводах с двухскоростными асинхронными двигателями, например, лифтовых установок.

Известен способ управления двухскоростным асинхронным двигателем, заключающийся в том, что осуществляют подачу напряжения сети непосредственно к высокоскоростной обмотке при пуске и к низкоскоростной обмотке статора при торможении двигателя [1] Однако этот способ не позволяет осуществить поддержание на требуемом уровне ускорений и рывков при переходных процессах с разными моментами сопротивления.

Наиболее близким по технической сущности к изобретению является способ управления двухскоростным асинхронным двигателем путем изменения напряжения на его обмотках, заключающийся в том, что при торможении двигателя к его низкоскоростной обмотке подводят выпрямленное напряжение, для регулирования которого вводят обратную связь по скорости [2] Недостатком известного способа является необходимость использования усложняющего и удорожающего конструкцию и эксплуатацию электропривода оборудования: тахогенератора, выпрямителя и дополнительных силовых коммутирующих элементов, необходимых для отключения этого выпрямителя и подсоединения низкоскоростной обмотки к сети переменного тока при ревизии и наладке оборудования.

Целью изобретения является упрощение и снижение стоимости реализации при формировании требуемой закономерности изменения скорости двигателя при торможении.

Цель согласно первому варианту изобретения достигается тем, что в способе управления двухскоростным асинхронным двигателем, при котором в процессе пуска двигателя осуществляют подачу напряжения на высокоскоростную обмотку, а в процессе торможения производят подачу напряжения на низкоскоростную обмотку, при этом путем изменения напряжения обеспечивают требуемую зависимость скорости от времени и осуществляют торможение двигателя до нулевой скорости, перед торможением с высокой скорости на низкую обеспечивают наличие полного сетевого напряжения на высокоскоростной обмотке, измеряют момент двигателя, снимают напряжение с высокоскоростной обмотки и осуществляют указанную подачу напряжения на низкоскоростную обмотку, изменяют это напряжение по заранее выбранному в соответствии с измеренным моментом закону до скорости, соответствующей установившемуся режиму, после чего осуществляют указанное торможение двигателя до нулевой скорости с помощью механического тормоза.

Цель согласно второму варианту изобретения достигается тем, что в способе управления двухскоростным асинхронным двигателем, при котором в процессе пуска двигателя осуществляют подачу напряжения на высокоскоростную обмотку, а в процессе торможения производят подачу напряжения на низкоскоростную обмотку, при этом путем изменения напряжения обеспечивают требуемую зависимость скорости от времени и осуществляют торможение двигателя до нулевой скорости, перед торможением двигателя обеспечивают наличие полного сетевого напряжения на высокоскоростной обмотке, измеряют момент двигателя, снимают напряжение с высокоскоростной обмотки и осуществляют указанную подачу напряжения на низкоскоростную обмотку, изменяют это напряжение по заранее выбранному в соответствии с измеренным моментом закону вплоть до полного затормаживания двигателя, при этом, начиная со скорости, соответствующей установившемуся режиму на низкоскоростной обмотке, осуществляют указанное торможение двигателя до нулевой скорости с помощью механического тормоза.

На фиг. 1 изображено устройство для реализации способов, на фиг. 2 - механические характеристики электропривода и зависимость угла между фазными токами и напряжениями статора для высокоскоростной обмотки, на фиг. 3 и 4 - зависимости изменения скорости двигателя от времени в процессе торможения до нулевой скорости соответственно для случаев осуществления первого (фиг. 3) и второго (фиг. 4) вариантов изобретения.

Устройство (фиг. 1) содержит двухскоростной асинхронный двигатель 1, снабженный высокоскоростной обмоткой 2 и низкоскоростной обмоткой 3 статора, силовой модуль 4 полупроводникового преобразователя напряжения, входом подключенный к трехфазной сети 5 переменного тока, силовые коммутирующие элементы 6 и 7, датчик 8 тока и датчик 9 напряжения, вычислительный управляющий блок 10 и командный блок 11. Выход силового модуля 4 подключен через коммутирующие элементы 6 к обмотке 3, а также через коммутирующие элементы 7 и датчик 8 тока к обмотке 2, которая подсоединена и к датчику 9 напряжения. Выход блока 10 подключен к управляющим входам силового модуля 4, а входы к выходам датчика 8 тока и датчика 9 напряжения, а также командного блока 11.

На фиг. 2 приведены следующие кривые: 12 и 13 естественные механические характеристики двигателя 1, соответствующие подключению непосредственно к сети высокоскоростной обмотки 2 и низкоскоростной обмотки 3 статора; 14, 15, 16 и 17 динамические механические характеристики для низкоскоростной обмотки, при формировании которых для различных моментов сопротивления McI, McII, McIII и McIV соответственно обеспечивают требуемую зависимость изменения скорости двигателя от времени и определяют задание закона изменения во времени напряжения статора двигателя в процессе торможения с высокой скорости на низкую; 18 зависимость от скорости фазового сдвига между током и напряжением статора при подключении к сети высокоскоростной обмотки. На характеристике 12 обозначены точки, I, II, III, IV, а на характеристике 13 точки I', II', III', IV', соответствующие установившимся режимам двигателя при моментах сопротивления McI, McII, McIII, McIV.

На фиг. 3 и 4 обозначены следующие моменты времени (t); to - начальное время торможения двигателя; t1 и t2 начальные времена использования механического торможения двигателя при моментах сопротивления McI и McIV соответственно; t3 и t4 (или t5 и t6) времена полного затормаживания двигателя соответственно при McI и McIV при реализации первого (или второго) варианта изобретения. Изображенные на фиг. 3 кривые 19 и 20 зависимостей скорости от времени (аналогично на фиг. 4 кривые 21 и 22) соответствуют торможению при McI и McIV. Весь процесс торможения состоит их двух характерных интервалов: первый временной интервал (t0t1, t0t2, t0t1, t0t2 для кривых 19, 20, 21, 22 соответственно), где осуществляют торможение двигателя с высокой скорости на низкую, и второй временной интервал (t1t3, t2t4, t1t5, t2t6 для кривых 19, 20, 21, 22 соответственно), на котором производят торможение двигателей до нулевой скорости с использованием механического тормоза. Площади участков графиков кривых 19 22 для второго временного интервала (эти участки на фиг. 3 и 4 заштрихованы) равны соответствующим углам поворота ротора двигателя за время использования механического торможения.

Первый вариант предлагаемого способа осуществляют следующим образом.

В процессе пуска (например, кабины лифта) осуществляют плавное изменение напряжения на высокоскоростной обмотке 2 статора. По окончании процесса пуска и при дальнейшей работе в установившемся режиме на этой обмотке обеспечивают наличие полного сетевого напряжения, вследствие чего двигатель 1 работает согласно механической характеристике 12 в точке, которая расположена на рабочем участке I IV, соответствующем (в зависимости от загрузки кабины) возможному диапазону изменения момента сопротивления от McI до McIV. Перед осуществлением торможения (при подходе к месту начала замедления кабины) измеряют момент двигателя 1, например, момент McII в точке II, и снимают напряжение с высокоскоростной обмотки, затем в соответствии с измеренным моментом McII выбирают закон изменения во времени напряжения на низкоскоростной обмотке двигателя.

Выбор закона изменения во времени напряжения на статоре осуществляют, например, исходя из зависимостей изменения во времени скорости (t) и момента M(t), из которых (t) представляет собой требуемую для процесса торможения зависимости скорости от времени, а M(t) определяется в соответствии с уравнением движения ротора двигателя в виде где Mc момент сопротивления, значением которого установившемся режиме равно измеренному моменту двигателя; I момент инерции электропривода.

В процессе торможения формируют выбранный закон изменения напряжения статора, при котором имеет место изменение момента двигателя согласно характеристике 15. По окончании торможения до пониженной скорости двигателя работает согласно механической характеристике 13 в точке II'. Для торможения двигателя до нулевой скорости его отключают от сети и накладывают механический тормоз.

В процессе затормаживания до нулевой скорости (интенсивность которого в данном случае определяется моментом сопротивления и моментом тормоза) изменения ускорения зависят от момента сопротивления, изменяющегося в широких пределах. При моменте сопротивления McI ускорение меньше, чем при McIV, что определяет сравнительно небольшую точность остановки (например, кабины) из-за заметной разницы в углах поворота ротора за время второго временного интервала при разных моментах сопротивления (площадь заштрихованной области при McI заметно выше, чем при McIV (фиг. 3)). Точность остановки можно значительно увеличить при использовании второго варианта предлагаемого способа.

Второй вариант предлагаемого способа осуществляют следующим образом.

При пуске (например, кабины лифта) осуществляют плавное изменение напряжения на высокоскоростной обмотке статора. По окончании процесса пуска и при дальнейшей работе в установившемся режиме на этой обмотке обеспечивают наличие полного сетевого напряжения, вследствие чего двигатель 1 работает согласно механической характеристике 12 в точке, которая расположена на рабочем участке I IV, соответствующем (в зависимости от загрузки кабины) возможному диапазону изменения момента сопротивления от McI до McIV. Перед осуществлением торможения (при подходе к месту начала замедления кабины) измеряют момент двигателя, например, момент McII в точке II, и снимают напряжение с высокоскоростной обмотки, затем осуществляют подачу напряжения на низкоскоростную обмотку и изменяют это напряжение по заранее выбранному в соответствии с измеренным моментом закону вплоть до полного затормаживания двигателя.

Выбор закона изменения во времени напряжения на статоре на первом временном интервале (где осуществляют торможение двигателя с высокой скорости на низкую, соответствующую установившемуся режиму двигателя при работе на низкоскоростной обмотке в точке II') производят аналогично первому варианту способа. На втором временном интервале (на котором осуществляют торможение двигателя до нулевой скорости с помощью механического тормоза и поэтому характер изменения скорости определяется моментом сопротивления, моментом тормоза и моментом двигателя) в зависимости от измеренного значения момента задают такой закон изменения момента и, соответственно, фазного напряжения двигателя, при котором площади кривых скорости в случае различных моментов сопротивления будут близки друг к другу (заштрихованные области на фиг. 4).

Для измерения момента асинхронного двигателя используют различные способы. Например, измеряют переменные статорных цепей и определяют момент согласно одной из следующих формул: где P1 действующее значение электрической мощности, потребляемой асинхронным двигателем от сети; I1 действующее значение тока статора; r1 активное сопротивление фазной обмотки 2 статора; o= 2f/p синхронная скорость двигателя (f частота питающего напряжения; p число пар полюсов); UA и UB (iA и iB) мгновенные значения напряжения (тока) для фаз A и B статора.

Для упрощения вместо момента двигателя можно измерять какую-либо другую физическую величину, которая пропорциональна моменту. В данном случае в качестве такой физической величины можно использовать угол сдвига между фазными напряжениями и токами двигателя. В предлагаемом способе момент двигателя измеряют в установившемся режиме в пределах рабочего участка механической характеристики 12, где зависимость момента от скорости практически линейна (фиг. 2), а в указанных пределах и упомянутый угол сдвига между фазными напряжениями и токами двигателя линейно зависит от скорости (см. кривую 18 на фиг. 2). Поэтому вместо момента двигателя можно измерять упомянутый угол сдвига.

В случае, когда на втором временном интервале не подают напряжение на обмотки двигателя, устройство (фиг. 1) работает следующим образом.

При пуске, например, кабины лифта по сигналам от командного блока 11 включаются коммутирующие элементы 7 и с помощью вычислительного управляющего блока 10 изменяется соответствующим образом угол управления тиристоров силового модуля 4. По окончании процесс пуска угол управления становится равным нулю и двигатель 1 работает в установившемся режиме в соответствии с рабочим участком I IV механической характеристики 12.

При подходе к остановке по сигналу от командного блока 11 в вычислительном управляющем блоке 10 путем обработки информации, поступающей на блок 10 от датчика 8 тока и датчика 9 напряжения, согласно формулам (2) или (3) определяется и далее запоминается значение момента двигателя.

Также по сигналам от командного блока 11 отключаются коммутирующие элементы 7 и включаются коммутирующие элементы 6, подключая низкоскоростную обмотку 3 к силовому модулю 4. При этом в зависимости от сигнала, соответствующего измеренному моменту двигателя, который равен моменту сопротивления в установившемся режиме на рабочем участке характеристики I IV (например, момент McII в точке II на кривой 12 фиг. 2), из оперативной памяти вычислительного управляющего блока 10 извлекается одна из заранее введенных в нее для ряда значений моментов сопротивлений зависимостей сигнала, характеризующего угол управления тиристоров силового модуля 4, и формируется требуемая динамическая механическая характеристика 15 (фиг. 2). Далее по сигналам от командного блока 11 включается механический тормоз (на фиг. 1 не показан) и отключаются коммутирующие элементы 6.

Использование данного способа в электроприводах, например, подъемно-транспортных механизмов и прежде всего лифтовых установок позволяет обеспечить требуемый по условиям комфортности процесс торможения кабины без применения тахогенераторов (использование которых для типовых установок нежелательно по конструктивным соображениям), а также получить необходимую точность остановки рабочего органа и снизить потери электроэнергии.

Формула изобретения

1. Способ управления двухскоростным асинхронным двигателем, при котором в процессе пуска двигателя осуществляют подачу напряжения на высокоскоростную обмотку, а в процессе торможения производят подачу напряжения на низкоскоростную обмотку, при этом путем изменения напряжения обеспечивают требуемую зависимость скорости от времени и осуществляют торможение двигателя до нулевой скорости, отличающийся тем, что перед торможением с высокой скорости на низкую обеспечивают наличие полного сетевого напряжения на высокоскоростной обмотке, измеряют момент двигателя, снимают напряжение с высокоскоростной обмотки и осуществляют указанную подачу напряжения на низкоскоростную обмотку, изменяют это напряжение по заранее выбранному в соответствии с измеренным моментом закону до скорости, соответствующей установившемуся режиму, после чего осуществляют указанное торможение двигателя до нулевой скорости с помощью механического тормоза.

2. Способ управления двухскоростным асинхронным двигателем, при котором в процессе пуска двигателя осуществляют подачу напряжения на высокоскоростную обмотку, а в процессе торможения производят подачу напряжения на низкоскоростную обмотку, при этом путем изменения напряжения обеспечивают требуемую зависимость скорости от времени и осуществляют торможение двигателя до нулевой скорости, отличающийся тем, что перед торможением двигателя обеспечивают наличие полного сетевого напряжения на высокоскоростной обмотке, измеряют момент двигателя, снимают напряжение с высокоскоростной обмотки и осуществляют указанную подачу напряжения на низкоскоростную обмотку, изменяют это напряжение по заранее выбранному в соответствии с измеренным моментом закону вплоть до полного затормаживания двигателя, при этом, начиная со скорости, соответствующей установившемуся режиму на низкоскоростной обмотке, осуществляют указанное торможение двигателя до нулевой скорости с помощью механического тормоза.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области электротехники, а более точно к линейному электроприводу и предназначено для использования в робототехнике и приводе станков

Изобретение относится к микромехатронике и микроробототехнике, в частности к шаговым линейным микроприводам

Изобретение относится к электротехнике и может быть использовано в электроприводе колебательного движения путем реализации автоколебательного режима движения активного ротора за счет обратной связи между обмотками статора

Изобретение относится к электротехнике, а более точно к линейному электроприводу и предназначено для использования в робототехнике

Изобретение относится к электротехнике, в частности к электромагнитному приводу с двигателем возвратно-поступательного движения

Изобретение относится к текстильному машиностроению и может быть использовано в бесчелночных ткацких станках

Изобретение относится к электротехнике, в частности к колебательным электроприводам переменного тока, питаемым от источников различных частот, и может быть использовано в приводах вибротранспортировки, в системах активной компенсации продольных колебаний валопроводов, для перемещения поршней гидроусилительных систем и в других механизмах испытательной, измерительной или калибровочной техники

Изобретение относится к силовым преобразователям напряжения и частоты, используемым для управления работой двигателей переменного тока с короткозамкнутым ротором общего применения

Изобретение относится к электромагнитным вибраторам, используемым в различных областях, например, для создания вибрации, для транспортировки по трубам сыпучих веществ, при создании вибровоздействий на сыпучие вещества с целью их уплотнения и просеивания, для интенсификации технологических процессов в жидких средах и т.д

Изобретение относится к электротехнике, в частности к специальным электроприводам, где исполнительный орган совершает колебательные и возвратно-поступательные движения, и может быть использовано для механических испытаний кабельных изделий на многократный перегиб, в устройствах укладки длинномерных изделий при намотке их на катушки, бобины и т.п

Изобретение относится к электротехнике и может быть использовано для стабилизации частоты вращения электродвигателей переменного тока (и в частности демпфирования ее колебаний) - синхронных, синхронно-гистерезисных или асинхронных, как общего применения, так и специального, выполненных без доступа к валу, например, гироскопических, или используемых в многодвигательных электроприводах синхронного вращения

Изобретение относится к области электротехники, в частности к электроприводу переменного тока повышенной частоты с асинхронными электродвигателями

Изобретение относится к области электротехники, а именно к электроприводам переменного тока с асинхронными электродвигателями

Изобретение относится к электротехнике и может быть использовано в электроприводах переменного тока на базе асинхронного двигателя с фазным ротором, преимущественно для крановых механизмов подъема и передвижения, требующих получения пониженных (ползучих) скоростей

Изобретение относится к электротехнике и может быть использовано в тяговых электродвигателях, в электрических машинах, предназначенных для работы в широком диапазоне изменения частоты вращения, в устройствах, в которых необходим большой пусковой момент

Изобретение относится к области электротехники, в частности к электрическим вибрационным двигателям (ЭВД)

Изобретение относится к электротехнике и может быть использовано при разработке высокочастотных зарядных устройств и источников питания с гальванической развязкой выходного напряжения для тягового электропривода аккумуляторных электромобилей
Наверх