Способ сорбционной очистки минеральной воды от фенолов

 

Изобретение относится к области технологии селективной сорбционной очистки сильно минерализованных природных вод от фенолов, нефтепродуктов без удаления минеральных компонентов из воды, а также может быть использовано для очистки питьевой и сточной воды от фенолов. Изобретение позволяет повысить эффективность способа. Способ включает фильтрацию воды через активный древесный уголь, причем активный древесный уголь разбавляю песком в массовом соотношении от 1:50 до 1:100, а полидисперсность частиц угля и песка выбирают в пределах 150:500 мкм, 1 табл., 1 ил.

Изобретение относится к области технологии селективной сорбционной очистки сильно минерализованных природных вод от фенолов, нефтепродуктов без удаления минеральных компонентов из воды. Изобретение может быть использовано для очистки питьевой и сточной воды от фенолов.

Известны способы для удаления из питьевой воды примесей фенольного типа фильтрацией воды через модифицированный лактазой уголь (Пат. ГДР 294685 от 10.10.1991, МКИ C 02 F 1/54) и через импрегнированный серебром активированный уголь (фильтры типа "Родник").

Недостаток данного способа заключается в том, что на серебряном угле происходит необратимая химическая адсорбция фенола, т.е. сорбент не регенерируется и используется один раз. Кроме того, присутствие на угле модификаторов типа лактазы и серебра не исключает побочных процессов окисления и комплексообразования неорганических компонентов воды, которые нежелательны в технологии очистки минеральной воды.

Наиболее близким по техническому решению (прототипом) к заявленному изобретению является способ очистки питьевой воды от фенола фильтрацией через активный древесный дробленый уголь по ГОСТ 6217-74 (фильтры типа "Роса").

Недостатком способа-прототипа является его низкая эффективность, которая в основном связана с малой емкостью адсорбента (0,002 0,003 мг фенола на 1 г сорбента).

Основной технической задачей является повышение эффективности способа. По сравнению с прототипом емкость сорбента по фенолу превосходит прототип в 100 200 раз.

Технический результат достигается тем, что в способе сорбционной очистки минеральной воды от фенолов, включающем фильтрацию воды через активный древесный уголь, согласно предложенного решения, активный древесный уголь разбавляют песком в массовом отношении от 1:50 до 1:100, причем с полидисперсностью частиц угля и песка в пределах 150 500 мкм.

Технология по предложенному способу (за счет применения в 100 200 раз более емкого сорбента) приобретает новые и более совершенные свойства, что позволяет сделать вывод о соответствии заявляемого решения критерию "изобретательский уровень".

Пример конкретного выполнения.

Для реализации способа использовали загрязненные природными фенолами минеральные воды месторождений Западной Сибири (см. таблицу), угли активные марки БАУ, СУ-А, Г-300, речной песок или альбитофир. Степень очистки воды определяли спектрофотометрически на приборе КФК-2 в кварцевых кюветах при 490 нм. Содержание солей в минеральных водах определено весовым методом и на приборе "Осмотест-002".

Пример 1. Для очистки минеральной воды Парабельского месторождения, содержащей 0,08 мг/л фенола, 14,7 г/л солей (сухого остатка) готовили фильтр по схеме (см. рисунок). Цилиндрическую колонну с патрубками на концах заполнили 30 г смеси уголь:песок 1 50 тремя равными насыпными слоями, разделенными друг от друга тремя слоями волокнистого материала (лавсан, нитрон, вискоза, хлопок) в количестве 1 г. С помощью перистальтического насоса марки 372С минеральную воду прокачивали со скоростью 10 л/ч через фильтр до содержания фенола в фильтре, равного 0,001 мг/л (ПДК). Общий объем очищенной воды составил 2,5 л. Содержание фенола в фильтрате контролировали методом спектрофотометрии с помощью прибора КФК-2. В этих условиях фильтрации емкость сорбента по фенолу равна 0,33 мг/л. Содержание солей (сухого остатка) в очищенной минеральной воде уменьшилось до 14,2 г/л (на 3,4%).

Пример 2. Для очистки минеральной воды Александровского месторождения, содержащей 0,005 мг/л фенола, 19,6 г/л солей (сухого остатка) готовили фильтр по схеме (см. рисунок). Цилиндрическую колонку с патрубками на концах заполнили 30 г смеси уголь песок 1 80 тремя равными насыпными слоями, разделенными друг от друга тремя слоями волокнистого материала (лавсан, нитрон, вискоза, хлопок) в количестве 1 г. С помощью перистальтического насоса марки 372С минеральную воду прокачивали со скоростью 10 л/ч через фильтр до содержания фенола в фильтрате, равного 0,001 мг/л (ПДК). Общий объем очищенной воды составил 48 л. Содержание фенола в фильтрате контролировали методом спектрофотометрии с помощью прибора КФК-2. В этих условиях фильтрации емкость сорбента по фенолу равна 0,6 мг/г. Содержание солей (сухого остатка) в очищенной минеральной воде уменьшилось до 18,6 г/л (на 5,1%).

Эксперимент по примерам 3 6 проводили по аналогичной методике (см. таблицу).

Из таблицы видно, что разбавлением активного угля нейтральным песком и с уменьшением размера частиц емкость сорбента по фенолу возрастает. Максимальное значение емкости сорбента (0,6 мг/г) в условиях очистки минеральной воды от фенола соответствует массовому отношению уголь песок 1 80 и размеру частиц 150 250 мкм. При соотношении угля и песка менее 1 50 и более 1 100 емкость сорбента по фенолу резко уменьшается. При размере частиц угля и песка менее 150 мкм эффективность способа низка, т.к. низка скорость фильтрации, а при размере этих частиц более 500 мкм снижается сорбционная емкость смеси, и эффективность способа заметно ниже, чем при их полидисперсности 150 500 мкм.

Формула изобретения

Способ сорбционной очистки минеральной воды от фенолов, включающий фильтрацию воды через активный древесный уголь, отличающийся тем, что активный древесный уголь разбавляют песком в массовом соотношении 1:50 1:100, причем полидисперсность частиц угля и песка выбирают в пределах 150 500 мкм.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к очистке сточных вод микробиологических производств от органических примесей сорбцией активированным углем и к регенерации использующихся сорбентов с помощью экстрагентов

Изобретение относится к физико-технологическим процессам обработки жидкостей, в процессах ее дегазации, используемых для питания теплоэнергосистем, полива культур в теплицах, для затворения цементного камня и различных минеральных и органических вяжущих

Изобретение относится к устройствам комплексной очистки загрязненных сред от твердой фазы, включающей металлические частицы

Изобретение относится к устройствам для магнитной очистки и очистки жидкостей от механических примесей и может быть использовано, в частности, для обработки топлива двигателей внутреннего сгорания

Изобретение относится к области машиностроения и может быть использовано на предприятиях, применяющих смазочно-охлаждающие жидкости (СОЖ), а также другие технологические жидкости, подлежащие очистке от механических примесей

Изобретение относится к области отделения взвешенных частиц от жидкостей и может быть использовано для отделения СОЖ от стружки

Изобретение относится к химической технологии и может быть использовано в процессах, связанных с электрохимическим регулированием кислотно-основных, окислительно-восстановительных свойств и каталитической активности воды

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх