Вибрационный датчик

 

Использование: изобретение относится к технике измерения вязкости и предназначено для использования в вискозиметрах, коагуляторах и т.п. Сущность изобретения: вибрационный датчик содержит камертон с двумя ножками, установленный у основания ножек пьезоэлектрические преобразователи и присоединенный к камертону зонд. Пьезоэлектрические преобразователи установлены в углублениях у основания ножек. 1 ил.

Изобретение относится к технике измерения вязкости, а более конкретно к устройству вибрационных датчиков, предназначенных для использования в вискозиметрах, коагуляторах и т.п.

Известны камертонные датчики [1] Этот датчик имеет два пьезоэлектрических преобразователя, наклеенных на ножки камертона вблизи его основания. На конце одной из ножек, перпендикулярно к ней припаян на стержне шарик, являющийся пробным телом, погружаемый при измерениях в жидкость.

Вибрационный датчик вязкости [2] содержит камертон с двумя ножками, у основания которых установлено по одному пьезоэлектрическому преобразователю, между ножками камертона установлена полая пружина с входом и выходом, по которой во время измерений проходит исследуемая жидкость и при колебаниях камертона она испытывает периодическую деформацию.

Такие датчики просты в изготовлении. Общим их недостатком является (при конкретном изготовлении камертоне и пробном теле) невозможность повысить чувствительность датчика до необходимого значения.

Техническим результатом является повышение чувствительности датчика.

Указанный технический результат достигается тем, что в вибрационном датчике, содержащем камертон с двумя ножками, пьезоэлектрические преобразователи, установленные у основания ножек, зонд присоединенный к камертону, под пьезоэлетрическими преобразователями удалена часть материала, а пьезоэлектрические преобразователи установлены в углублениях на место удаленного материала.

На чертеже представлены прототип, предлагаемое устройство и эпюры, возникающих в них, механических напряжений. Датчик состоит из камертона 1, пьезоэлементов 2, зонда 3. Камертон установлен на опоре 4. Зонд погружен в изменяемую жидкость 5.

Для проведения измерений датчик должен быть включен в цепь обратной связи автогенератора, обеспечивающего работу на частоте резонанса. При этом на один из пьезоэлементов подают возбуждающее электрическое напряжение UF, с другого снимают электрическое напряжение Y,, пропорциональное амплитуде возникающих механических колебаний.

Когда ножки камертона совершают движение, в его теле возникают упругие силы, которые препятствуют изменению формы: силы упругости при упругой деформации пропорциональны механической деформации.

В рассматриваемом случае имеем следующий вид деформации: переменное растяжение-сжатие, изменение длины внешних и внутренних слоев материала ножек вдоль их осей с границей по нейтральному слою.

По закону Гука для одноосного напряженного состояния, нормальные механические напряжения изменяются по высоте поперечного сечения пропорционально расстоянию y от нейтрального слоя где r радиус кривизны нейтрального слоя, а величина 1/r представляет собой кривизну нейтрального слоя; E коэффициент, зависящий от материала и называемый модулем продольной упругости.

Кривизна нейтрального слоя при изгибе пропорциональна изгибающему моменту Mи и обратно пропорциональна величине EIx, называемой жесткостью где представляет собой момент S инерции поперечного сечения относительно нейтральной оси X.

На чертеже изображено максимальное мгновенное значение механических напряжений возникающих при растяжении внешних слоев материала. Анализ эпюр показывает, что при одинаковой величине изгибающего момента, чем меньше площадь поперечного сечения внешнего слоя, тем больше механическое напряжение и, следовательно больший изгиб в данном месте, а именно под пьезоэлектрическим преобразователем. Поэтому для одинаковой деформации рассматриваемой конструкции требуются различные внешние силы F и тем меньшие, чем меньше площадь поперечного сечения в зоне пьезоэлектрических преобразователей. Следовательно, камертон с углублениями у основания ножек оказывается более чувствительным.

В условиях возбуждения колебаний UF величина приложенного электрического напряжения, пропорциональная деформирующей силе, U величина возникающего на пьезоэлементе электрического напряжения, пропорциональная деформации, она поддерживается постоянной.

Для ньютоновких жидкостей трение между колеблющимися по гармоническому закону пробным телом и жидкостью описывается формулой Zж механическое сопротивление жидкости; F сила, вызывающая движение; амплитуда колебаний;
x амплитуда скорости колебаний;
плотность жидкости;
h вязкость жидкости;
A, B, C коэффициент пропорциональности.

Кроме сопротивления жидкости присутствует также сопротивление

обусловленное внутренним трением измерительной установки (подвеса) и

где Z механическое сопротивление;
возбуждающее напряжение при отсутствии контакта пробного тела с жидкостью;
напряжение, пропорциональное смещению при отсутствии контакта пробного тела с жидкостью.

При стабилизированном U имеем K(UF UFo).

Измерения проводят следующим образом.

Находят значение UFo при отсутствии контакта зонда с жидкостью (среда из воздуха). Находят UFk при контакте пробного тела с калибровочной жидкостью. Определяют коэффициент K по формуле
K /(UFk UFo),
где к, к плотность и вязкость калибровочной жидкости.

Далее, при неизменном значении U определяют UF исследуемой жидкости.

Находят искомое значение по формуле
K(UF UFo)
или по калиброванной зависимости, которая может быть построена после определения UF ряда жидкостей с известными значениями .

Использование предлагаемого вибрационного датчика обеспечивает увеличение чувствительности теоретически в диапазоне нескольких порядков.

Датчик позволяет уменьшить размеры зонда и соответственно объем исследуемой жидкости.


Формула изобретения

Вибрационный датчик, содержащий камертон с двумя ножками, установленные у основания ножек пьезоэлектрические преобразователи и присоединенный к камертону зонд, отличающийся тем, что пьезоэлектрические преобразователи установлены в углублениях у основания ножек.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к обогащению полезных ископаемых, а более конкретно к способам и устройствам автоматического контроля вязкости флотореагентов, тяжелых суспензий, пульп, вспенивателей и других жидких продуктов и может быть использовано на углеобогатительных, железорудных, полиметаллических и других обогатительных фабриках с мокрыми способами обогащения с целью автоматического управления процессами
Изобретение относится к устройствам измерения вязкости жидкостей и может быть использовано для экспресс-анализа воды с целью своевременного обнаружения залповых сбросов загрязненных вод и общего слежения за качеством природных и антропогенно измененных вод и стоков

Изобретение относится к исследованиям вибропоглощающих свойств конструкционных материалов и может быть использовано при определении демпфирующих свойств разных твердых материалов

Изобретение относится к устройствам для определения вязкоупругих характеристик различных материалов и может быть использовано в химической, авиационной и других отраслях промышленности, а также в научных исследованиях

Изобретение относится к вискозиметрии и может быть использовано в вибрационных вискозиметрах

Изобретение относится к технике измерения вязкости и предназначено для контроля структурированных жидкостей в исследовательских лабораториях, в медицине, промышленности

Изобретение относится к устройствам для определения вязкости текучей среды

Изобретение относится к области измерительной техники, в частности к бесконтактным аэрогидродинамическим способам измерения вязкости жидкостей по их колебаниям, и может найти применение в таких отраслях промышленности, как химическая, лакокрасочная и пищевая

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного пневматического измерения вязкости жидких сред, и может найти применение в системах автоматического контроля и управления технологическими процессами в различных отраслях промышленности

Изобретение относится к технике измерения вязкости, а более конкретно к устройству погружных датчиков камертонного типа, предназначенных для использования в исследовательских лабораториях, в медицине, для контроля технологических жидкостей

Изобретение относится к области измерения физико-химических характеристик жидких сред и может быть использовано для измерения вязкости жидких сред, например нефти и нефтепродуктов

Изобретение относится к вискозиметру (варианты) для измерения вязкости протекающей в трубопроводе среды, а также к способу определения вязкости среды

Изобретение относится к области промысловой геофизики и предназначено для исследования скважинной жидкости

Изобретение относится к измерительному преобразователю вибрационного типа, предназначенному, в частности, для использования в вискозиметре, вискозиметре/плотномере или вискозиметре/массовом расходомере
Наверх