Способ модификации поверхности фольги для электролитических конденсаторов

 

Изобретение относится к производству электролитических конденсаторов. Согласно изобретению на металлическую фольгу в вакуумной инертной среде наносят покрытие из смеси токопроводящего и диэлектрического материалов методом высокочастотного магнетронного распыления из составной мишени. 3 ил.

Изобретение относится к радиоэлектронике и может быть использовано в производстве электролитических конденсаторов.

Известен способ получения покрытия, состоящего из смеси гранул Al и Al2O3 на проводящей подложке методом реактивного испарения алюминия в атмосфере окислителя, который позволяет получать фольги повышенной емкости для электролитических конденсаторов.

Однако известный способ не позволяет с требуемой точностью контролировать и поддерживать на оптимальном уровне состав рабочей среды в вакуумной камере, следствием чего является недостаточная воспроизводимость количественного соотношения фаз, а следовательно, и электрофизических свойств напыленных слоев.

Изобретение направлено на повышение стабильности процесса и воспроизводимости эксплуатационных характеристик электролитических конденсаторов.

Это достигается тем, что процесс нанесения объемно-пористого металлодиэлектрического покрытия на проводящую подложку ведут методом высокочастотного магнетронного распыления обеих фаз в инертной среде.

На фиг. 1 - 3 представлена структура полученных композитов.

Способ реализуется следующим образом.

Предварительно изготовленную составную мишень из токопроводящего (Al) и диэлектрического материалов (Al2O3) помещают в вакуумную камеру, которую откачивают до давления 1,5 10-3 Па. Затем рабочий объем заполняется аргоном до давления 5 10-1 Па. После чего производится нанесение покрытия методом высокочастотного магнетронного распыления мишени. Правильный выбор геометрии распылительной системы и мишени, а также условий осаждения обеспечивает получение равномерных по толщине покрытий Al-Al2O3 на проводящей алюминиевой подложке.

Анализ электронограмм, представленных на фиг. 1 показал, что полученные пленки представляют собой смесь высокодисперсной проводящей фазы Al и аморфной Al2O3. Размер кристаллических частиц Al, хаотично распределенных в матрице Al2O3, определен с помощью темнопольного анализа (фиг. 2) и составляет 5 - 50 нм. Пленки имеют сильно развитую поверхность с неровностями величиной 0,5 - 1 мкм (фиг. 3). Такая морфология внешней границы раздела (Al - атмосфера) и структура полученного композита, определяющая высокое значение внутренней поверхности раздела (Al-Al2O3), обеспечивают достаточно высокое значение удельной электрической емкости, что в сочетании с хорошей адгезией полученных слоев позволяет их использовать в качестве пористых покрытий катодных фольг при производстве электролитических конденсаторов.

Предлагаемый способ может быть использован для расширения спектра материалов, применяемых для формирования развитого поверхностного рельефа катодных фольг электролитических конденсаторов.

Формула изобретения

Способ модификации поверхности фольги для электролитических конденсаторов путем магнетронного нанесения в высоком вакууме на металлическую фольгу покрытия, состоящего из смеси токопроводящего и диэлектрического материалов, отличающийся тем, что процесс ведут методом высокочастотного распыления в инертной среде из составной мишени.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления

Изобретение относится к электротехнике и может быть использовано при производстве конденсаторов с двойным электрическим слоем (КДЭС)

Изобретение относится к радиоэлектронике, конкретно к электронакопительным устройствам, которые могут быть использованы, в частности, в качестве кратковременных или резервных источников тока радиоэлектронной аппаратуры, в элементах памяти микросхем персональных ЭВМ, видеомагнитофонов и т.п
Изобретение относится к технологии изготовления конденсаторов, преимущественно оксидно-электролитических
Изобретение относится к электронной технике и может быть использовано в производстве высокоемких оксидных конденсаторов с объемно-пористым анодом

Изобретение относится к электротехнике, в частности к конструкции электродов для конденсаторов с двойным электрическим слоем

Изобретение относится к технологии производства оксидно-полупроводниковых конденсаторов (ОПК) с твердым электролитом, анод которых изготовлен из тантала, алюминия или иного вентильного металла и их сплавов
Изобретение относится к способам изготовления оксидно-полупроводниковых конденсаторов

Изобретение относится к электротехнике и может быть использовано в производстве электрохимических накопителей энергии большой емкости

Изобретение относится к электротехнической промышленности, в частности к производству конденсаторов с двойным электрическим слоем (КДЭС)

Изобретение относится к электротехнической промышленности, в частности к производству конденсаторов с двойным электрическим слоем (КДЭС)

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления

Изобретение относится к электротехнике и может быть использовано при производстве конденсаторов с двойным электрическим слоем (КДЭС)
Изобретение относится к области разработки электролитических конденсаторов на основе двойного электрического слоя, которые могут быть использованы в современной энергетике, автомобилестроении и т.д
Наверх