Способ снижения в газовых выбросах концентрации бенз(а) пирена и других полициклических ароматических углеводородов

 

Использование: очистка газовых выбросов от органических соединений и, в частности, от полициклических ароматических углеводородов (ПАУ) на предприятиях металлургической, химической, нефтехимической, коксохимической, топливно-энергетической отраслей промышленности и в других отраслях народного хозяйства. В газовых выбросах, содержащих технологическую комбинацию ПАУ, в основном адсорбированных на пылевидной подложке, проводят фотоокисление путем облучения электрическим разрядом в интервале длин волн 340 - 410 нм со средней плотностью световой энергии 10-3 -3 х 10-1Дж/см2 за время обработки при рабочих температурах -20 - +80oС. Изобретение позволяет достигнуть снижения концентрации бенз(а)пирена (БП) и других ПАУ. В условиях промышленности газохода электролизного производства получено, что для уничтожения 1 г БП затрачивается 0,5 кВт ч электроэнергии. 1 табл.

Изобретение относится к способам очистки газовых выбросов от органических соединений, и, в частности, от полициклических ароматических углеводородов (ПАУ), и может быть использовано на предприятиях металлургической, химической, нефтехимической, коксохимической, топливно-энергетической отраслей промышленности и в других отраслях народного хозяйства.

Цель изобретения - достижение эффективного снижения концентрации бенз(а)пирена (БП) и других ПАУ в газовых выбросах, содержащих многокомпонентный состав ПАУ.

Известен способ очистки газовых выбросов промышленных предприятий от ПАУ, основанный на термическом и каталитическом их разложении [1]. Недостатками такого способа являются необходимость подогрева и очистки от пыли газовых выбросов и использование дорогостоящих катализаторов.

Известен также способ снижения концентрации БП и других ПАУ в результате фотоокисления [2]. ПАУ наносился на различные виды пылевидной подложки, которые присутствуют в технологических выбросах производств. Облучение проводилось ртутной лампой среднего давления. Спектральный диапазон излучения лежал в области 200-410 нм. Снижение концентрации БП и других ПАУ наблюдалось отдельно для каждого вида пыли (Al2O3, SiO2, летучая зола и сажа) с нанесенным на него в один слой полициклическим ароматическим углеводородом. Например, для БП, нанесенного на Al2O3 в результате фотоокисления достигнуто снижение концентрации в 2 раза при плотности световой энергии 9 Дж/см2.

К недостаткам вышеуказанного способа снижения концентрации следует отнести то обстоятельство, что фотоокисление проводилось в отдельности для каждого ПАУ, адсорбированного на пылевидных подложках в монослое. Как известно, любые технологические и природные выбросы при температурах -20 - +80oC характеризуются комбинацией ПАУ, адсорбированных в виде многослойных покрытий на пылевидных подложках. Установлено, что свет в полосе возбуждения ПАУ проникает на глубину до нескольких тысяч слоев. При облучении комбинации ПАУ, адсорбированных в виде многослойных покрытий на пылевидной подложке широкополосным излучением 200-410 нм в условиях недостатка кислорода в нижних слоях возможны взаимные преобразования ПАУ, в частности наработка БП посредством фотокаталитических реакций за счет коротковолнового диапазона облучения, когда энергия фотона превышает энергию разрыва C-C или C-H связей.

Целью предлагаемого изобретения является достижение эффективного снижения концентрации БП и других ПАУ в газовых выбросах, содержащих технологическую комбинацию ПАУ, адсорбированных на пылевидной подложке, путем облучения электрическим разрядом в диапазоне длин волн 340-410 нм со средней плотностью световой энергии 10-3 - 3 1-1 Дж/см2, падающей на элементарный объем газовых выбросов за время обработки при рабочих температурах -20 - +80oC.

Испытания изобретения проводились на алюминиевом заводе. Газовые выбросы электролизного производства имели температуру +30 - +60oC, когда ПАУ находятся, в основном, в адсорбированном состоянии на пыли, преимущественно на основе окиси алюминия. При этом толщина покрытия ПАУ составляла оценочно несколько десятков слоев.

При облучении газовых выбросов электролизного производства с плотностью световой энергии 3 10-2 Дж/см2 в спектральном интервале 200-410 нм в газоходе (расход (10-100)103 нм3/ч, концентрация БП до 800 мкг/м3) и в фонарных выбросах цеха (концентрация БП 10 мкг/м3) наблюдалось повышение концентрации БП (табл. пп. 1 и 2). Рост концентрации БП с расходом энергии 1/3 - 1/6 кВтч/гБП зарегистрирован двумя различными методиками измерения.

В случае облучения выбросов в газоходе с такой же плотностью световой энергии в спектральном интервале 340-410 нм имело место понижение концентрации БП с расходом энергии 0,5 кВтч/гБП (табл. п.1).

Таким образом, можно сделать вывод, что при малых плотностях световой энергии 3 10-2 Дж/см2 в спектральном диапазоне 200 - 340 нм при использовании комбинации ПАУ, находящихся, в основном, в адсорбированном состоянии, наблюдается наработка БП.

Следовательно, для достижения эффективного снижения концентрации БП при малых плотностях световой энергии необходимо исключить спектральный диапазон 200-340 нм и пользоваться для фотообработки газовых выбросов широкополосным источником в диапазоне длин волн 340-410 нм.

Это не относится к фотообработке газовых выбросов с высокой плотностью световой энергии (20 Дж/см2) в спектральном интервале 200-410 нм, когда идет глубокое фотоокисление всех ПАУ, в том числе наработанного БП (табл. 1, п. 3), но такую плотность световой энергии технически трудно осуществить.

Наличие в излучении разряда более длинноволновой ( 9826 410 нм) части спектра не ухудшает качества фотообработки газовых выбросов.

Технически достижимый интервал средних значений плотностей световой энергии 10-3 - 3 10-1 Дж/см2 может обеспечить очистку газовых выбросов с концентрацией БП (единицы мкг-мг)/м3, содержащихся в организованных и неорганизованных выбросах электролизного и коксохимического производств, установках замедленного коксования, получения битума в нефтеперерабатывающей промышленности и других отраслях промышленности, в атмосфере больших городов. При этом температуры газовых выбросов лежат в интервале -20 - +80oC.

Предложенный способ достижения эффективного снижения концентрации БП в газовых выбросах испытан в заводских условиях. Энергозатраты составили 0,5 кВтч на 1 г уничтоженного БП.

Источники информации 1. Абасеев В. К. Термическое и каталитическое обезвреживание отходящих газов, содержащих 3,4-бензпирен. - Химическая промышленность, 1973, N 1, с. 25.

2. Thomas D.Behymer and Ronald A. Hites. Environ Sci Technol. 1985 19, p. 1004-1006.

Формула изобретения

Способ снижения в газовых выбросах концентрации бенз(а)пирена и других полициклических ароматических углеводородов, преимущественно адсорбированных на пылевидной подложке, включающий их фотоокисление при облучении электрическим разрядом, отличающийся тем, что фотоокисление полициклических ароматических углеводородов в виде технологических комбинаций проводят облучением электрическим разрядом в интервале длин волн 340 - 410 нм со средней плотностью световой энергии 10-3 - 3 10-1 Дж/см2 при рабочих температурах от -20 до +80oC.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к прикладной неравновесной низкотемпературной плазмохимии и может найти применение в процессах получения озоносодержащих газовых смесей, очистки (обезвреживания) отработанных газов и паров, в том числе вентиляционных и технологических выбросов от токсичных газообразных веществ, пиролиза углеродсодержащих соединений, синтеза нитридов, оксидов, восстановительного синтеза карбидов, получения оксида азота, плазменной конверсии углеродсодержащего сырья, восстановления оксидного сырья и галогенидов водородом, получения высокодисперсных порошков из газовой фазы, модификации свойств поверхностей материалов, а также при кондиционировании воздуха, дезинфекции или стерилизации материалов, предметов или воздуха

Изобретение относится к очистке запыленных газов в электрофильтрах и может быть использовано на предприятиях металлургической, химической, нефтеперерабатывающей промышленности и других производствах, обеспыливание отходящих газов который с помощью электрофильтров недостаточно эффективно

Изобретение относится к системам воздухоочистки, а именно к электрическим воздухоочистителям, и может быть использовано в различных отраслях промышленности и быту для очистки воздуха от частиц пыли и аэрозоля

Изобретение относится к технике импульсного питания электрических аппаратов с коронообразующими разрядными электродами, например электрофильтров, генератора озона и других аппаратов с комплексной электрической нагрузкой (реактивной и активной)

Изобретение относится к технике импульсного питания электрических аппаратов с коронообразующими разрядными электронами, например, электрофильтров, генераторов озона и других аппаратов

Изобретение относится к газоочистным и пылеулавливающим аппаратам и может быть использовано в цветной металлургии, нефтехимической промышленности, в производстве минеральных удобрений и других отраслях для очистки газов в электрофильтрах

Изобретение относится к устройствам для электрической очистки газов

Изобретение относится к устройствам для электрической очистки газов

Изобретение относится к устройствам электростатической газоочистки, отличающихся наличием неподвижных электродов с плоскими поверхностями, расположенными параллельно газовому потоку, и может быть использовано в электростатических фильтрах для очистки воздуха и газа от пыли и грязи как в жилых, так и в производственных помещениях

Изобретение относится к области радиационных технологий и может найти применение в электротехнической промышленности на тепловых электростанциях для разложения вредных для окружающей среды таких газов, как окиси азота и серы, в химической промышленности для разложения этих и других газов и химических процессов радиолиза и др

Изобретение относится к способам удаления кислотных загрязнителей, таких как SO2 и NOx из топочных газов путем воздействия излучения, в частности из промышленных топочных газов, выбрасываемых нагревательными установками и электростанциями, а также к устройствам для удаления SO2 и NOx из промышленных топочных газов

Изобретение относится к ионной технологии и может быть использовано в медицине, машиностроении, на транспорте, в том числе речном и морском, в автомобильной промышленности, сельском хозяйстве, авиации, космической технике, металлургии, энергетике

Изобретение относится к области технологии очистки и обезвреживания отходящих газов, газовых выбросов различных производств и процессов, а также плазмохимического синтеза химически активных соединений с использованием электрических методов, в частности к устройству газоразрядных камер, в которых производят процесс детоксикации и очистки

Изобретение относится к устройствам для очистки газовых выбросов промышленных предприятий от токсичных органических веществ, в частности выбросов алюминиевых производств, включающих полициклические, ароматические углеводороды (ПАУ), например, 3,4- бензпирен (БП), являющийся весьма токсичным канцерогенным веществом

Изобретение относится к области разделения, выделения и очистки газов, а именно к способу электрохимического отделения кислых газов из смеси газов, включающему разделение электролита на анолит и католит с различными pH, абсорбцию кислых газов католитом с последующей десорбцией аналитом, при этом один из электродов электролизера деполяризуют газом с выделением того же газа на другом электроде, а в качестве газа-деполяризатора используют водород или кислород

Изобретение относится к двигателестроению, в частности к способам нейтрализации вредных компонентов выхлопных газов двигателей внутреннего сгорания
Наверх