Электрический ракетный двигатель

 

Двигатель предназначен для космических кораблей. Он содержит корпус, катод, анод, соленоидную катушку, сопло и дополнительно снабжен кварцевым изолятором, расположенным внутри корпуса. Соленоидная катушка размещена вокруг изолятора, и в ее конце расположен анод. Катод установлен под изолятором в передней части двигателя. Сопло выполнено магнитным. Указанное расположение частей двигателя обеспечивает возможность получения высоких значений импульса и кинетической энергии. 3 ил.

Двигатель предназначен для космических кораблей и расположен в нижней части космического корабля по близости от торцевого холловского двигателя, расположенного в верхней трети космического корабля. Предложенный двигатель может быть использован в качестве электронной пушки.

Известен ракетный двигатель, который содержит рентгеновскую трубу, электровакуумный прибор, служащий источником рентгеновского излучения, при торможении электронов, испускаемых катодом и их ударе об антикатод. При этом энергия электронов, ускоряемая сильным электрическим полем в пространстве между анодом и катодом, частично преобразуется в энергию рентгеновского излучения. В этом двигателе рентгеновская трубка не содержит кольцевидного анода и не может создавать рабочее тело излучением катода для ракетного двигателя [4].

Устройства, описанные в [2] и [3], имеют тот же недостаток, что и указанное выше. Однако наиболее близким к заявленному изобретению является двигатель, описанный в [1] , который содержит корпус, катод, анод, соленоидную катушку, сопло.

Сущность изобретения состоит в следующем: электрический ракетный двигатель дополнительно содержит кварцевый изолятор, расположенный внутри корпуса, катод, установленный под изолятором в передней части двигателя, а соленоидная катушка размещена вокруг изолятора и в ее конце расположен анод, выполненный кольцевидным, для создания с катодом ассиметричного магнитного поля, при этом сопло выполнено магнитным и установлено в конце двигателя.

На фиг. 1 изображен продольный разрез двигателя. На фиг. 2 и 3 соответственно продольный и поперечный разрезы пластинчатого катода.

В соответствии с фиг. 1 двигатель содержит корпус 1, кварцевый изолятор 2, пластинчатый катод 3, соленоидную катушку 4, кольцевидный анод 5, магнитное сопло 6.

Пластинчатый катод (3) излучает электроды, являющиеся рабочим телом для двигателя. Соленидная катушка (4) создает ассиметричное магнитное поле и защищает анод от электронов. Кольцевидный анод (5) притягивает электроны и создает с катодом (3) ассиметричное магнитное поле. Под действием силы ампера между катодом и анодом происходит ускорение электронов. Магнитное (электронное) сопло (6) создает тяговую силу.

Под корпусом (1) двигателя расположен кварцевый изолятор (2), под которым в передней части расположен катод (3) и вокруг изолятора соленоидная катушка (4), в конце которой расположен кольцевидный анод (5) и заканчивается магнитным соплом (6).

Работа. Электроны, излучаемые катодом, под действием силы ампера и ассиметричного магнитного поля ускоряются в промежутке между катодом и анодов и, выходя из магнитного сопла, создают тяговую силу. 1836 кг водорода содержит 1 кг электронов. Кинетическая энергия торцового холловского двигателя /1836 кг (5104 м/с)2:2=9,181011Дж.

Кинетическая энергия Э.Р.Д. (1 кг108 м/с)2: 2=21016 Дж.

ЭРД выделяет в 2104 раза больше энергии.

ЭРД позволяет получать импульс более 2108м/с и кинетическую энергию до 21016 Дж.

Формула изобретения

Электрический ракетный двигатель, включающий корпус, катод, анод, соленоидную катушку и сопло, отличающийся тем, что дополнительно содержит кварцевый изолятор, расположенный внутри корпуса, катод установлен под изолятором в передней части двигателя, а катушка размещена вокруг изолятора и в ее конце расположен анод, выполненный кольцевидным для создания с катодом асимметричного магнитного поля, при этом сопло выполнено магнитным и установлено в конце двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области плазменных двигателей, предназначенных для установки на космических летательных аппаратах, в частности к плазменным двигателям с замкнутой траекторией дрейфа электронов, называемых также стационарными плазменными двигателями

Изобретение относится к авиационной технике и может использоваться для создания летательных аппаратов

Изобретение относится к авиационной технике и может использоваться для летательных аппаратов

Изобретение относится к электрореактивным двигателям, а более конкретно, к импульсным электрореактивным двигателям

Изобретение относится к плазменной технике и может быть использовано в электрических ракетных двигателях, в частности плазменных ускорителях с замкнутым дрейфом электронов, предназначенных для работы в космических условиях, и может найти применение в электронике для ионной очистки, получения покрытий различного функционального назначения в вакуумной металлургии для совершенствования поверхностных характеристик металлов и сплавов

Изобретение относится к космической технике, а именно к электрореактивным двигательным установкам, в состав которых входят стационарные плазменные двигатели и двигатели с анодным слоем

Изобретение относится к ионно-оптическим ускорителям ионов и может быть использовано в ионных двигателях

Изобретение относится к ракетной и ядерной технике, предназначено для освоения космического пространства и может быть использовано для получения электрической и тепловой энергии на космическом корабле

Изобретение относится к плазменной технике, а более конкретно, касается конструирования ускорителей плазмы с замкнутым дрейфом электронов (УЗДЭ) и может быть использовано при разработке электроракетных двигателей, а также технологических ускорителей, применяемых в процессах вакуумно-плазменной технологии

Изобретение относится к электроракетным двигателям и можеи использоваться при их конструировании

Изобретение относится к использованию плазмы для получения реактивной тяги

Изобретение относится к области энергетики и может быть использовано для автономного непрерывного снабжения тепловой и механической энергией бытовых, промышленных и транспортных энергопотребителей, а после преобразования тепловой и механической энергии в электрическую для снабжения тех же потребителей электричеством

Изобретение относится к области плазменной техники, более конкретно к ускорителям плазмы с замкнутым дрейфом электронов, и может быть использовано при разработке электроракетных двигателей, а также технологических ускорителей, применяемых в процессах вакуумно-плазменной технологии

Изобретение относится к плазменной технике и преимущественно предназначено для использования в космической технике

Изобретение относится к плазменной технике и может найти применение в электроракетных двигателях космических двигательных установок
Изобретение относится к авиастроению и касается технологии создания движителей атмосферных летательных аппаратов на основе электрокинетического способа создания подъемной и движущей сил в газовой среде атмосферы

Изобретение относится к электрореактивным двигателям

Изобретение относится к области автоматического регулирования и может быть использовано в системах подачи рабочего тела плазменных ускорителей, а более конкретно для регулирования давления подачи РТ стационарных плазменных двигателей (СПД) космических аппаратов; в наземных условиях - для обеспечения работы технологических источников плазмы
Наверх