Масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения

 

Масса относится к промышленности строительных материалов и может найти применение для изготовления теплоизоляционных плит методом воздействия сверхвысокочастотного излучения, характеризующихся повышенной водостойкостью и низкой объемной массой. Масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения включает, мас.ч.: натриевое жидкое стекло 100, фторфосфат кальция 10-30, фторид алюминия 3-5, алкилбензолсульфоновая кислота 0,3-0,4. Техническим результатом является повышение водостойкости при сохранении требуемой прочности получаемого материала. 1 табл.

Изобретение относится к промышленности строительных материалов и может найти применение для изготовления теплоизоляционных плит методом воздействия сверхвысокочастотного излучения, характеризующихся повышенной водостойкостью и низкой объемной массой.

Известен состав для получения легких пористых блоков методом воздействия сверхвысокочастотного излучения, включающий жидкое стекло и керамзит в соотношении 70:30 (1).

Недостатком известного состава является то, что получаемые из него изделия обладают большой объемной массой и недостаточно высокой водостойкостью.

Наиболее близким к изобретению по технической сущности является состав для изготовления теплоизоляционного материала методом воздействия сверхвысокочастотного излучения, содержащий раствор силиката щелочного металла и функциональные добавки: борат марганца или цинка, гидроокись алюминия или окись цинка, асбест (2).

Известный состав дает возможность обеспечить требуемый уровень прочностных свойств получаемого из него материала. Недостатком является недостаточная водостойкость, что определяет срок службы строительного материала. Пористые материалы, получаемые из таких исходных составов, имеют плотность (объемную массу) на уровне 320 г/см3, прочность при сжатии порядка 1,6-1,9 МПа, водостойкость - 19-28%. Кроме того, такая исходная композиция достаточно сложна и дорога.

В изобретении решается задача повышения водостойкости при сохранении требуемой прочности получаемого материала.

Задача решается тем, что масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения, включающая жидкое стекло и функциональные добавки, согласно изобретению, содержит в качестве жидкого стекла натриевое жидкое стекло и в качестве функциональных добавок фторфосфат кальция, фторид алюминия и алкилбензолсуфоновую кислоту, при следующем соотношении компонентов, мас.ч.: Натриевое жидкое стекло - 100 Фторфосфат кальция - 10 - 30 Фторид алюминия - 3 - 5 Алкилбензолсульфоновая кислота - 0,3 - 0,4 Признаками изобретения являются: 1. жидкое стекло; 2. функциональные добавки; 3. натриевое жидкое стекло; 4. фторфосфат кальция; 5. фторид алюминия; 6. алкилбензолсульфоновая кислота; 7. количественное соотношение компонентов.

Признаки 1 и 2 являются общими с прототипом, признаки 3 - 7 являются существенными отличительными признаками изобретения.

Известные материалы для изготовления пористого силикатного материала не обладают достаточной водостойкостью. В предложенной массе для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения решается задача повышения водостойкости изделий, полученных на ее основе.

Предлагаемое сочетание предложенных функциональных добавок в массе для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения дает возможность получить ранее не фиксируемый результат. Активный по отношению к натриевому жидкому стеклу фторфосфат кальция (наполнитель), взаимодействуя с жидким стеклом, связывает щелочь, образуя труднорастворимое соединение. Использование более активного компонента - фторида алюминия как инициатора твердения (отвердитель) усиливает процесс образования труднорастворимого соединения (увеличивает скорость). Алкилбензолсульфоновая кислота обеспечивает предварительное вспенивание массы, что в конечном итоге снижает объемную массу пористого материала. В результате этого эффективного взаимодействия, а также воздействия сверхвысокочастотного излучения для термообработки образуется водостойкий материал с приемлемой прочностью.

Состав для получения массы готовят следующим образом. В жидкое натриевое стекло добавляют фторфосфат кальция, перемешивают до однородной массы, добавляют фторид алюминия, тщательно перемешивают, добавляют алкилбензолсульфоновую кислоту и перемешивают до получения однородной массы. Полученной массой заполняют формы и помещают в резонатор сверхвысокочастотной печи и проводят термообработку, при которой масса дополнительно вспучивается и приобретает требуемые свойства.

Примеры. Для экспериментальной проверки заявляемого изобретения были приготовлены 9 составов для получения пористого силикатного материала путем нагрева сверхвысокочастотным излучением. Полученные результаты приведены в таблице. Составы отличались количественным содержанием функциональных добавок. Оценка проводилась по прочности, объемной массе и водостойкости. Водостойкость определялась как остаточная прочность при сжатии после водонасыщения (выдержки в воде 24 часа). Во всех случаях массу обрабатывали в поле сверхвысокочастотного излучения с удельной мощностью 0,65 кДж/см3 при температуре 170 - 180oC. Из приведенных данных видно, что масса предлагаемого состава обеспечивает получение пористого силикатного материала с высокой прочностью и высокой водостойкостью.

Из таблицы также следует, что заявляемый технический эффект достигается только в пределах значений содержания компонентов смеси, указанных в формуле.

Таким образом, предложенная масса позволяет получать высококачественные строительные материалы - пористые теплоизоляционные плиты с высоким сроком службы.

Источники информации, принятые во внимание при составлении заявки.

1. Патент РФ N 2016886, опублик. 1994.

2. Акцептованная заявка Японии N 53-39890, опублик. 1978 - прототип.

Формула изобретения

Масса для изготовления пористого силикатного материала под действием сверхвысокочастотного излучения, включающая жидкое стекло и функциональные добавки, отличающаяся тем, что содержит в качестве жидкого стекла натриевое жидкое стекло и в качестве функциональных добавок - фторфосфат кальция, фторид алюминия и алкилбензолсульфоновую кислоту при следующем соотношении компонентов, мас.ч.: Натриевое жидкое стекло - 100 Фторфосфат кальция - 10 - 30 Фторид алюминия - 3 - 5
Алкилбензолсульфоновая кислота - 0,3 - 0,4н

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к строительным материалам и может быть использовано для изготовления строительных изделий и в монолитном домостроении

Изобретение относится к технологии обращения со щелочными металлами и может быть использовано в традиционной и атомной энергетике, химической промышленности, электротехнике, металлургии и других отраслях техники

Изобретение относится к способу изготовления полистирол-бетонных стеновых блоков сложной формы

Изобретение относится к области строительных материалов
Изобретение относится к промышленности строительных материалов, преимущественно к производству керамических конструкционно-теплоизоляционных изделий пористой структуры

Изобретение относится к области металлургии, а именно к технологии изготовления составных канальных пробок, предназначенных для продувки инертными газами жидкого металла, преимущественно стали, в сталеразливочных и промежуточных ковшах

Изобретение относится к способу приготовления бетонной смеси и может быть использовано для изготовления облегченных строительных деталей и конструкций при сборном и монолитном строительстве

Изобретение относится к промышленности строительных материалов, а именно к способам изготовления конструкционных и теплоизоляционных материалов из ячеистых бетонов с применением дисперсного армирования синтетическим волокном

Изобретение относится к способам изготовления строительных растворов, а именно пенобетонов неавтоклавного естественного твердения и способам изготовления монолитных конструкций зданий и сооружений

Изобретение относится к промышленности строительных материалов, в частности к способам получения технической пены для поризованных строительных материалов

Изобретение относится к строительным материалам и может быть использовано для приготовления ячеистых бетонов при производстве строительных изделий и для монолитного строительства

Изобретение относится к промышленности строительных материалов, в частности к использованию сточных вод при получении строительного гравия Известна сырьевая смесь для изготовления керамзита, включающая глину, кальцинированную соду, шламовые отходы и кислые гудроны при следующем соотношении компонентов, вес.%: Слабовспучивающее глинистое сырье - 97,0 - 98,0 Кальцинированная сода - 0,2 - 0,3 Нефтяной шлам - отходы первичной переработки - 1,875 - 2,850 Кислые гудроны - 0,123 - 0,165 (А.С

Изобретение относится к строительным материалам, в частности к составам легкобетонных смесей с модифицированными добавками

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления ячеистобетонных изделий: стеновых блоков, камней и др

Изобретение относится к области строительных материалов, в частности к способам тепловой обработки полистиролбетонных изделий и конструкций, используемых в строительной индустрии при возведении зданий и сооружений промышленного, гражданского и социально-культурного назначения

Изобретение относится к строительным материалам и может быть использовано при изготовлении ячеистых бетонов и газонаполненных материалов всех видов
Изобретение относится к теплоизоляции труб и строительной промышленности и может найти применение для теплоизоляции стальных труб для теплопроводов диаметром от 57 до 1420 мм, а также в монолитном домостроении, устройстве кровельной теплоизоляции, заливке полов, чердачных перекрытий, утеплении стен, выпуске теплоизоляционных и строительных изделий

Изобретение относится к промышленности строительных материалов и может быть использовано для получения изделий из неавтоклавного ячеистого бетона как в условиях завода, так и на строительной площадке
Наверх