Способ получения перфторалканов

 

Изобретение относится к технологии получения перфторалканов, в частности гексафторэтана, октафторпропана, декафторбутана, используемых в качестве диэлектриков, хладагентов, компонентов в пенообразующих и других композициях. Перфторалканы получают фторированием перфторалканов C2-C4 в гомогенной фазе в среде низкомолекулярного перфорированного растворителя при концентрации фторируемого соединения 1-5 мас.%. Температура процесса от минус 35 до минус 15oС. Выход целевых продуктов составляет 99 - 99,9%. 1 з.п.ф-лы, 2 табл.

Изобретение относится к технологии получения перфторалканов, в частности гексафторэтана, октафторпропана, декафторбутана, используемых в качестве диэлектриков, хладагентов, компонентов в пенообразующих композициях и лазерных рабочих средах, рабочего тела в плазмохимическом травлении полупроводниковых материалов.

Из способов получения перфторалканов (ПФА) известны следующие: пиролиз фторорганического сырья, газофазное фторирование углеводородов и их галоидзамещенных. Основным недостатком этих способов является большое количество побочных продуктов, требующих дорогостоящей очистки или уничтожения (патент США 3222406, 1965, патент США 4377715, 1983).

Практически без примесей ПФА получают или фторированием элементным фтором или трифторидом кобальта (вылож. заявки Японии 90-131438 и 85-81134, авт.св. СССР 1630241, 1984). Для регулирования тепловыделения процессы ведут в среде разбавителя - тетрафтордихлорэтана (выложенная заявка Японии 90-131438) или в две стадии с разбавлением гесафторпропилена октафторпропаном на стадии пуска (авт.св. СССР 1630241).

За прототип принят способ получения одного из перфторалканов - гексафторэтана, заключающийся во фторировании тетрафторэтилена элементным фтором в среде разбавителя - тетрафтордихлорэтана, взятого в количестве 10 - 100 моль на 1 моль тетрафторэтилена, соотношение фтора к тетрафторэтилену 1,2/1, температура процесса - 80,2oC, выход гексафторэтана - 87,8% (вылож. заявка Японии 90-131438).

К недостаткам этого способа можно отнести: 1. Способ разработан для получения одного перфторалкана - гексафторэтана и проводился в среде озоноактивного разбавителя.

2. Выход целевого продукта недостаточно высок.

Задача, решаемая данным изобретением, заключается в разработке универсального способа фторирования перфторалкенов с углеродной цепью C2-C4, оптимально сочетающего тепловой и материальный балансы процесса и пригодного для промышленной реализации по производительности, простоте аппаратурного оформления, а также чистоте и выходу целевых перфторалканов.

Техническая сущность предлагаемого изобретения заключается в следующем: процесс ведут в гомогенной фазе в среде перфторуглерода, являющегося растворителем как для фтора, так и для фторируемого перфторалкена, что в совокупности с теплофизическими свойствами перфторуглеродов обеспечивает интенсивный тепломассообмен, предотвращающий деструкцию углерод-углеродной связи, при этом концентрация фторируемого соединения не должна превышать 5 мас. %; температура процесса - минус 35 - минус 15oC; для предотвращения перехода углеродсодержащих компонентов в газовую фазу давление процесса поддерживают не ниже давления насыщенных паров растворителя при температуре процесса. При соблюдении указанных условий выход составляет 99-99,9%.

Отклонения от технологического режима ведут к следующим последствиям: при повышении температуры выше минус 10oC, так же как и концентрации перфторалкена выше 5%, процесс становится нестабильным, часто сопровождается небольшими взрывами-хлопками, а иногда и взрывом всей системы; при температуре выше -15oC снижается выход целевого продукта; при температуре ниже минус 35oC и концентрации перфторалкена ниже 1% скорость процесса замедляется, что приводит к снижению производительности процесса.

Из применяемых перфторуглеродных растворителей предпочтительными являются целевые продукты, что существенно упрощает процесс, устраняя стадию разделения.

Пример 1.

В реактор из стали 12Х18Н10Т диаметром 45 мм и высотой 250 мм, снабженный рубашкой, мешалкой, сифонами для подачи фтора и фторируемого перфторалкена, запорной арматурой и манометром, загружают 200 мл перфторированного растворителя и охлаждают реактор до температуры минус 30oC, после чего подают исходный перфторалкен, а затем фтор с незначительным избытком от стехиометрии (0,1 - 3%). После завершения реакции реакционную массу нейтрализуют, пропуская через фильтр с ХПИ (химический поглотитель известковый), и анализируют методом ГЖХ. Полученные результаты представлены в табл. 1.

Из данных табл. 1 видно, что при увеличении концентрации перфторалкена более 5% процесс фторирования становится неустойчивым и сопровождается взрывами-хлопками. В реакционной массе появляются продукты деструктивного фторирования - в оп. 4 и 5 - CF4, в оп. 9 и 10 - CF4 C2F6, на внутренних стенках реактора и сифонах обнаружена сажа.

Пример 2.

В реактор, описанный в примере 1 и заполненный растворителем, подают одновременно фтор и перфторалкен со скоростью 40,5 - 42 мл/мин и 40 мл/мин соответственно, продукты реакции по переливному штуцеру поступают в охлаждаемый до температуры минус 20 - минус 30oC сборник, затем на фильтр с ХПИ. Продукты после нейтрализации анализируют методом ГЖХ. В случае, если использован растворитель иной, чем целевой продукт, продукты подвергают ректификации. Технологические параметры и полученные результаты приведены в табл. 2.

Из табл. 2 видно, что при проведении процесса в указанных технологических пределах достигается высокий выход целевых продуктов, а сам процесс проходит спокойно, без взрывов.

Пример 3.

В реактор, изготовленный из стали 12Х18Н10Т, диаметром 0,4 м и высотой 1,9 м, снабженный охлаждающими рубашкой и змеевиком, двумя барботерами и переливным штуцером в верхней части, загружают при охлаждении до -30oC 120 кг C3F8. По барботерам подают фтор со скоростью 0,3-1,5 м3/ч при избытке 0,5% и гексафторпропен со скоростью 0,3-0,5 м3/ч. Продукты реакции по переливному штуцеру поступают в сборник, охлаждаемый до минус 30-20oC, затем на патрон с ХПИ. Выход целевого продукта 99,5%. Производительность до 15 кг/ч.

Как видно из приведенного экспериментального материала, предложенная организация технологического процесса позволяет решить проблемы теплообмена и получать ряд перфторалканов по одной технологии с высоким выходом и производительностью, приемлемой для промышленного производства. Кроме того, в этом процессе требуется незначительный избыток фтора - 0,1-3% (в прототипе - 20%), что улучшает технико-экономические показатели процесса.

Источники информации 1. Пат. США 3222406, 260-653, 1965.

2. Пат. США 4377715, 570-123, 1983.

3. Вылож. з-ка Японии 90-131438, C 07 C 19/08, 1990.

4. Вылож. з-ка Японии 85-81134, C 07 C 19/08, 1985.

5. Авт.св. СССР 1630241, C 07 C 19/08, приор. 1984.

Формула изобретения

1. Способ получения перфторированных алканов фторированием перфторалкенов элементным фтором в среде фторсодержащего соединения, отличающийся тем, что процесс ведут в среде низкомолекулярного перфторированного растворителя компонентов реакции при температуре минус 15 - минус 35oC и концентрации исходного перфторалкена 1 - 5 мас.%.

2. Способ по п.1, отличающийся тем, что в качестве исходного перфторалкена берут перфторалкены с углеродной цепочкой С2 - С4.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способу гидрофторирования фторолефинов

Изобретение относится к получению озонобезопасных хладонов этанового ряда, в частности 1,1,1,2-тетрафторэтана, который получают фторированием 1,1,1-трифторэтана фторидом металла переменной валентности в присутствии разбавителя

Изобретение относится к способам выделения пентафторэтана (также называемого HFC-125), особенно к способу выделения HFC-125 из смеси, состоящей из HFC-125 и по меньшей мере хлорпентафторэтана (также называемого CFC-115) в качестве компонента (то есть неочищенная смесь содержит по меньшей мере HFC-125 и CFC-115)

Изобретение относится к способу получения 1,1,2,2-тетрафторэтана, заключающемуся в каталитическом гидрировании тетрафторэтилена при повышенной температуре с использованием в качестве катализатора алюмопалладиевого катализатора

Изобретение относится к синтезу перфторуглеродов общей формулы CnF2n+2, где n = 1 - 4

Изобретение относится к получению гексафторэтана - соединения, которое используется в качестве хладоагента, а также как полупродукт в синтезе фторорганических соединений и растворитель в процессах полимеризации

Изобретение относится к очистке пентафторэтана (хладона-125), применяемого в качестве озонобезопасного хладоносителя и пропеллента в различных отраслях техники, от примеси пентафторхлорэтана (хладона-115)

Изобретение относится к способу получения аллилхлорида, используемого для производства эпихлоргидрина - сырья для эпоксидных смол

Изобретение относится к технологии получения хлорированных алифатических углеводородов, в частности к способу получения 1,2-дихлорэтана

Изобретение относится к органическому синтезу, в частности к получению смеси С4 хлоруглеводородов - предшественников хлордиеновых мономеров для синтеза каучуков

Изобретение относится к способу получения дихлорэтана, который находит применение в качестве растворителя, а также полупродукта для получения винилхлорида
Изобретение относится к способам бромирования ненасыщенных органических соединений, а именно к способу получения гексабромциклододекана (ГБ ЦДД), применяющегося в качестве пламягасящей добавки к пластмассам и тканям (полистирол, полипропилен, фенольные смолы и др.)

Изобретение относится к химической технологии и может быть использовано для производства дихлорэтана (Д) путем прямого хлорирования этилена

Изобретение относится к способам получения хлорорганических продуктов и может быть использовано в химической промышленности при усовершенствовании производства винилхлорида из этилена

Изобретение относится к способу получения 1,2-дихлорэтана (ДХЭ), используемого как сырье для крупнотоннажного производства винилхлорида - мономера для полимерных материалов, а также в качестве растворителя

Изобретение относится к способу получения 1,2-дихлорэтана (ДХЭ), используемого как сырье для одного из самых важных крупнотоннажных мономеров - винилхлорида, используемого для производства полимеров и сополимеров, ДХЭ является также растворителем с широким спектром свойств и сырьем для получения других хлорсодержащих растворителей (трихлорэтилена, перхлорэтилена и др.)
Наверх