Способ измерения радиуса кривизны длиннофокусного зеркала

 

Изобретение относится к технической физике, конкретно к оптотехническим измерениям, и может быть использовано при изготовлении длиннофокусных оптических зеркал, а также при их эксплуатации. Способ основан на формировании параллельного светового пучка, направлении его на исследуемую поверхность, пространственном разделении пучка после его отражения от зеркала, создании разности хода у разделенных пучков и получении интерференционной картины, на основании которой вычисляют радиус кривизны зеркала. Способ позволит измерять радиус кривизны длиннофокусных зеркал с большой точностью, которая составляет 0,06 - 0,08 %, а также сократить измерительное расстояние в 10-100 раз. 1 ил., 1 табл.

Изобретение относится к области технической физики, конкретно к оптотехническим измерениям, и может найти применение в оптическом приборостроении при изготовлении длиннофокусных оптических зеркал, а также при их эксплуатации.

При создании современных телескопов наземного и космического базирования, лазерных систем, космической оптики остается актуальным вопрос высокоточного измерения оптических характеристик зеркал с большим радиусом кривизны.

Известен способ измерения больших радиусов кривизны (Креопалова Г.В., Лазарева Н.А., Пуряев Д.Т. Оптические измерения. - М.: Машиностроение, 1987, с. 90-91), в котором формируют пучок света с известными характеристиками, направляют в оптическую систему и на основе пространственных характеристик отраженного пучка определяют радиус кривизны контролируемой оптической системы.

Способ не удовлетворяет современным требованиям по точности, так как, например, для радиуса кривизны R = 100 м погрешность измерения составляет 1 м (1%).

Известен способ определения фокусного расстояния длиннофокусных зеркал, выбранный нами в качестве прототипа (Патент РФ N 2072217, МПК G 01 M 11/00, приор. от 28.09.94), включающий формирование параллельного светового пучка, пространственное разделение его на два, отражение пучка от исследуемой поверхности, регистрацию пространственных характеристик обоих пучков в фокальной плоскости контролируемой системы и вычисление по ним фокусного расстояния и радиуса кривизны.

Способ также имеет недостаточно высокую точность (0,1-0,2%) и нетехнологичен, так как требует для проведения измерений размещение измерительных приборов в фокальной плоскости контролируемой оптической системы, что при больших радиусах кривизны чрезвычайно громоздко, а иногда вообще трудно выполнимо.

Нами теоретически обосновано и экспериментально подтверждено, что возможно высокоточное измерение радиусов кривизны длиннофокусных зеркал при переходе к интерферометрии сдвига и найденному методу обсчета полученной интерференционной картины.

Предлагаемый способ определения радиуса кривизны длиннофокусного зеркала позволяет производить измерения больших радиусов кривизны вблизи контролируемой поверхности с погрешностью до 0,06-0,08%, что выше современного уровня в 1,5-2 раза.

Такой технический эффект достигнут, когда в способе измерения радиуса кривизны длиннофокусного зеркала, включающем формирование светового пучка, отражение его от исследуемой поверхности, пространственное разделение пучка на два, регистрацию пространственных характеристик пучков и вычисление по ним радиуса кривизны, световой пучок формируют параллельным, разделяют пучок после отражения, создают оптическую разность хода у разделенных пучков, получают интерференционную картину, а радиус кривизны R находят по ее характеристикам из выражения: при использовании оптического клина как устройства разделения, при использовании плоскопараллельной пластины как устройства разделения, где t - толщина пластины или клина по оптической оси; d - расстояние между интерференционными полосами; i - угол падения пучка на пластину или клин; n - показатель преломления материала пластины или клина; - угол поворота полос по отношению к направлению сдвига;
- длина волны света;
L - расстояние от контролируемого зеркала до плоскости регистрации.

Знак "+" - для вогнутого зеркала, знак "-" - для выпуклого.

На чертеже представлена схема устройства, реализующего заявленный способ, где источник 1 излучения, светофильтр 2, конденсор 3, точечная диафрагма 4, объектив 5 коллиматора, контролируемое зеркало 6, пластина или клин 7, картина 8 в плоскости регистрации; d - расстояние между интерференционными полосами, i - угол падения пучка на пластину или клин, - угол падения пучка на контролируемую оптическую поверхность, - угол поворота полос по отношению к направлению сдвига.

Измерение радиуса кривизны по предлагаемому способу заключается в следующем.

Найденная зависимость радиуса кривизны длиннофокусных оптических систем и параметров интерференционной картины связывает большие оптические отрезки с расстояниями меду интерференционными полосами, которые характеризуются долями длины волны.

Для реализации условий зависимости на контролируемую поверхность направляют параллельный пучок лучей, чтобы иметь пучок с плоским волновым фронтом. Пучок делят пространственно на два после отражения от контролируемой поверхности, чтобы оба пучка несли информацию о ней, сдвигают пучки, создают оптическую разность хода лучей в сдвинутых пучках для получения интерференционной картины, в результате чего по характеристикам картины находят радиус кривизны контролируемого зеркала, используя выведенные зависимости.

В случае использования плоскопараллельной пластины в качестве устройства разделения пучков интерференционная картина представляет собой систему вертикальных полос, характеризуемых расстоянием d между их центрами. В случае использования клина картина также состоит из системы полос, развернутых на угол по отношению к направлению сдвига пучков.

Приведенные в формулах величины t, d, n, i, , современными методами измеряются с высокой точностью.

Возникшая возможность регистрации интерференционной картины вблизи контролируемой поверхности позволила определить отрезок L, составляющий доли метра, с малой погрешностью и тем самым уменьшить погрешности, связанные с вибрациями при больших измерительных расстояниях и турбулентностью атмосферы в протяженном измерительном тракте
Таким образом, повышение точности в предлагаемом способе достигается в конечном счете при использовании интерферометрии как метода, применение которого стало возможным при нахождении существующей зависимости радиуса кривизны контролируемой поверхности и параметров интерференционной картины, образуемой в результате взаимодействия пучков света после отражения от контролируемой поверхности с большим радиусом кривизны.

Исключение влияния аберраций осуществляется известными приемами.

Пример конкретного исполнения. На нашем предприятии на аттестованном стенде для оптотехнических испытаний крупногабаритной оптики были проведены измерения у сферического зеркала диаметром 1,5 м и радиусом кривизны примерно 50 м. В качестве источника использовался гелий-неоновый лазер с длиной волны 0,63 мкм. Конденсором с фокусным расстоянием 100 мм лазерный пучок фокусировался на точечной диафрагме диаметром 0,05 мм, помещенной в фокальной плоскости объектива коллиматора с фокусным расстоянием 2 мм. Выходящий из коллиматора параллельный пучок лучей диаметром 60 мм направлялся на контролируемое зеркало под углом = 2o30' к оптической поверхности, отражался от зеркала, направлялся под углом на клиновидную стеклянную пластину (из К8) толщиной t = 10,02 мм, расположенную на расстоянии 80 см от зеркала по оптической оси. Получаемая интерференционная картина наблюдалась на экране, отстоящем на расстоянии 20 см от пластины.

С помощью измерительного микроскопа, сфокусированного на плоскость экрана, измерялось расстояние между интерференционными полосами. Было произведено 3 серии измерений. Серии отличались изменениями угла (i) падения пучка на клиновидную пластину. В каждой серии измерение расстояния между интерференционными полосами производилось 10-12 раз. Для расчета радиуса кривизны использовалось среднее значение (dср.). Результаты измерений и расчета радиуса кривизны R по формуле приведены в таблице.

Оценим суммарную погрешность измерений. Основной вклад в эту погрешность вносит погрешность, связанная с измерением расстояния между интерференционными полосами. При соблюдении оптимальных условий наблюдения полос (высокий контраст, подбор увеличения микроскопа, отсутствие вибраций) проведение измерений не менее 10-12 раз дает погрешность измерения расстояния d/d = 310-4. Толщина пластины измеряется с погрешностью t/t = 210-4. Погрешность установки угла падения пучка на стеклянную пластину i/i и угла наклона полос по отношению к направлению сдвига пучков /, а также погрешность измерения показателя преломления материала пластины n/n и длины излучения в случае использования лазера / являются погрешностями второго порядка малости и в расчете суммарной погрешности во внимание не принимаются. Измерение расстояния L с помощью набора концевых мер было осуществлено с погрешностью не более L/L = 1-310-4.

Таким образом, суммарная погрешность определения радиуса кривизны контролируемой поверхности составила 6-810-4, т.е. 0,06-0,08%.

Полученные величины радиусов кривизны, приведенные в таблице, свидетельствуют о высокой воспроизводимости метода, поскольку отступления от среднего значения 49977 мм не превышают погрешности измерений.

Таким образом, предложенный способ измерения больших радиусов кривизны впервые позволил с высокой степенью точности не ниже 0,06 - 0,08% измерять большие радиусы кривизны длиннофокусных зеркал. Способ значительно технологичнее, так как, используя его, производят измерения в непосредственной близости от контролируемой оптической поверхности, что сокращает измерительные расстояния в 10-100 раз и тем самым значительно уменьшает погрешности, связанные с вибрациями и турбулентностью в измерительном тракте.

Предлагаемый способ найдет применение при создании высококачественных лазерных устройств, при разработке телескопов космического и наземного базирования, а также в практике оптотехнических измерительных лабораторий при создании длиннофокусных оптических систем разнообразного назначения с высокими требованиями к качеству.


Формула изобретения

Способ измерения радиуса кривизны длиннофокусного зеркала, включающий формирование светового пучка, направление его на исследуемую поверхность, пространственное разделение пучка на два, регистрацию пространственных характеристик пучков и вычисление по ним радиуса кривизны, отличающийся тем, что световой пучок формируют параллельным, пучок разделяют после отражения от исследуемой поверхности, создают оптическую разность хода у разделенных пучков, получают интерференционную картину, а радиус кривизны R находят по ее характеристикам из выражения

при использовании оптического клина как устройства разделения,

при использовании плоскопараллельной пластины как устройства разделения,
где t - толщина пластины или клина по оптической оси;
d - расстояние между интерференционными полосами;
i - угол падения пучка на пластину или клин;
n - показатель преломления материала пластины или клина;
- угол поворота полос по отношению к направлению сдвига;
- длина волны света;
L - расстояние от контролируемого зеркала до плоскости регистрации;
знак "+" - для вогнутого зеркала, знак "-" - для выпуклого.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области транспортной светотехники, а именно к методам и устройствам контроля и диагностики фар транспортных средств

Изобретение относится к измерительной технике и может быть использовано для определения места повреждения кабеля с металлическими элементами

Изобретение относится к измерительной технике и может быть использовано для определения расстояния до места повреждения оптического кабеля и, в частности, для определения расстояния до места повреждения оболочки оптического волокна, для оценки зоны повреждения кабельной линии, длины кабельной вставки

Изобретение относится к аппаратам для определения повреждения на судне, например, корпусе судна, содержащим распределенную систему оптических волокон, расположенных вблизи корпуса судна, причем указанные оптические волокна присоединены к центральному блоку, приспособленному для определения характеристик оптических волокон на режиме пропускания света для определения повреждения корпуса судна

Изобретение относится к способу контроля лежащей между световодным блоком подключения, в частности абонентским вводом на стороне станции коммутации, и определенным пассивным оптическим стыком части оптической широкополосной соединительной линии, в частности абонентской линии, согласно которому от световодного блока подключения передают оптический Downstream-сигнал, образованный из подлежащего передаче по оптической широкополосной соединительной линии в Downstream-направлении информационного сигнала и двоичного сигнала псевдослучайного шума; от пассивного оптического стыка передают небольшую часть оптического Downstream-сигнала обратно в Upstream-направлении к световодному блоку подключения, где его в предусмотренном там оптическом приемнике, в частности, вместе с отраженными на прочих местах отражения оптической широкополосной соединительной линии составляющими оптического Downstream-сигнала и принятым по оптической широкополосной соединительной линии оптическим Upstream-сигналом преобразуют в электрический сигнал; и содержащийся там отраженный сигнал контроля оценивают относительно его отражения на пассивном оптическом стыке, в то время как названный электрический сигнал, а также задержанный на промежуток времени задержки, который соответствует времени прохождения сигнала на широкополосной соединительной линии от световодного блока подключения к пассивному оптическому стыку и обратно, двоичный сигнал псевдослучайного шума подводят к содержащему умножитель с последующим интегрирующим устройством коррелятору сигнала, амплитуду выходного сигнала которого с учетом времени прохождения сигнала контролируют на появление составляющей двоичного сигнала псевдослучайного шума, отраженной от пассивного стыка; этот способ отличается согласно изобретению тем, что необходимый на стороне передачи двоичный сигнал псевдослучайного шума и подводимый к коррелятору задержанный по времени двоичный сигнал псевдослучайного шума создают двумя отдельными генераторами псевдослучайного шума с соответственно различными стартовыми параметрами

Изобретение относится к измерительной технике и может быть использовано для определения потерь оптической мощности в соединении оптических волокон при монтаже оптического кабеля при проведении аварийно-ремонтных работ на линии связи, в процессе строительства волоконно-оптических линий передачи

Изобретение относится к контролю характеристик волоконно-оптического кабеля, используемого в системах связи, для измерения распределенной температуры и напряжения вдоль оптических волокон

Изобретение относится к измерительной технике, технике связи и оптоэлектронике и может быть использовано при производстве волоконно-оптических кабелей и при эксплуатации волоконно-оптических трактов

Изобретение относится к области испытаний оборудования автомобилей
Изобретение относится к способам испытаний кабельных муфт, изготавливаемых из полимерных материалов, и может быть использовано в кабельной технике при прогнозировании их срока службы
Изобретение относится к способам испытаний полимерных материалов и может быть использовано в кабельной технике для оценки работоспособности комплектов монтажных деталей (КМД) муфт кабелей связи, в том числе оптических кабелей (ОК), после хранения в заданном интервале времени

Изобретение относится к области испытаний на механическую прочность световодов или других нитевидных материалов и позволяет повысить точность испытаний на разрыв

Изобретение относится к области светотехники, в частности к контролю светотехнических характеристик световых приборов в процессе их эксплуатации и настройке, например, после соответствующих видов ремонта транспортного средства

Изобретение относится к технической оптике и может быть использовано для испытаний информационно-измерительной оптико-электронной системы (ИИ ОЭС) как в целом, так и отдельно ее компонентов, в частности объектива и многоэлементного фотоприемника с блоком электроники
Наверх