Непрерывный магниетермический способ получения титана

 

Изобретение относится к металлургии титана. Предложен непрерывный способ получения металлического титана восстановлением тетрахлорида титана жидким металлическим магнием, при использовании которого полностью исключается образование титановой губки на стенках реактора. Титан получается в виде порошка равномерного гранулометрического состава и может быть использован как для выплавки слитков титана, так и для переработки методами порошковой металлургии. Восстановление ведут при подаче жидкого магния вертикальной струей вверх в виде фонтана навстречу парам титана, которые подают со скоростью, необходимой для его расходования в верхней части фонтана магния. Способ позволяет исключить зарастание титановой губкой фонтанирующего устройства. 1 табл.

Изобретение относится к цветной металлургии и, в частности, может быть использовано для получения металлического титана восстановлением тетрахлорида титана расплавленным металлическим магнием.

Известны способы магниетермического получения титана восстановлением тетрахлорида титана металлическим магнием.

Промышленный способ магниетермического получения титана в реакторах периодического действия обеспечивает возможность получения титана в виде "губки", из которой могут быть вплавлены слитки титана, отвечающего высоким требованиям, однако он обладает рядом существенных недостатков, главнейшие из которых: периодичность процесса, неполное использование магния, неоднородность качества получаемой титановой губки, высокие энергетические затраты на разогрев реактора перед каждой операцией и на вакуумную сепарацию титановой губки, большие затраты труда и времени на подготовку реакторов к процессу, на извлечение губки из реактора и подготовку ее к плавке.

Периодичность процесса обусловлена невозможностью извлечения из реактора титановой губки без остановки процесса и охлаждения реактора.

Имеется большое количество патентов на непрерывный магниетермический способ получения титана, однако ни один из них не нашел применения в промышленности, так как не удалось решить главные проблемы: исключить образование титановой губки, прочно связанной со стенками реактора, и получить титан требуемого качества.

В патенте (англ. ) N 711733, 1954 г., для предотвращения "прилипания" частиц титана к стенкам реактора предлагается продавливать жидкий магний через перфорированную крышку реактора, выполненного в виде длинной вертикальной трубы, заполненной парами тетрахлорида титана. Диаметр трубы выбирается таким, чтобы исключить контакт продуктов восстановления со стенками реактора. Реакция восстановления протекает во время падения капель магния. При этом, как утверждают авторы патента, восстановитель полностью расходуется, а продукты реакции при достижении сборника, расположенного в нижней части реактора, успевают затвердевать и остыть до температуры, при которой не происходит их агломерация и сцепление со стенками реактора. Порошкообразные продукты реакции - титан и хлорид магния - предлагается разделить механическим путем с последующим выщелачиванием.

Недостатком указанного способа является образование низших хлоридов титана и мелких пирофорных частицы титана, не пригодных не только для последующего получения качественного компактного металла, но и для использования в порошковой металлургии.

Наиболее близким аналогом предлагаемого способа является способ, защищенный авторским свидетельством N 411962, приоритет 05.06.1972 г., согласно которому восстановление паров тетрахлорида титана осуществляют на поверхности фонтанируемого жидкого магния, который "в виде струи подают в реакционную зону навстречу парам хлорида, и процесс восстановления проводят на поверхности образующихся и находящихся во взвешенном состоянии зародышей титана".

Реакционная камера выполнена в виде вертикальной трубы достаточного диаметра и высоты, чтобы магний не попадал на ее стенки. Жидкий магний подается из котла, с которым герметично соединена реакционная камера, вертикальной струей вверх навстречу парам тетрахлорида титана, поступающим с определенной скоростью в верхнюю часть реактора. Хлориды титана восстанавливаются на поверхности магния до металла, образуют зародыши титана, которые вместе с циркулирующим магнием многократно попадают в зону реакции, при этом происходит их укрупнение в результате того, что восстановление хлорида титана протекает преимущественно на поверхности частиц. Крупные частицы титана под действием гравитационных сил осаждаются в нижнюю часть котла и переходят в слой жидкого хлорида магния, который образуется в результате реакции и, имея более высокую плотность, чем жидкий металлический магний, собирается в нижней части котла. По мере накопления хлорида магния он сливается из котла вместе с порошком титана, а в котел подается равное по объему количество жидкого магния, тем самым обеспечиваются условия для осуществления процесса в непрерывном режиме. Отделение порошка титана от хлорида магния осуществляют известными способами: вакуумной сепарацией или растворением хлорида магния в воде.

Способ обеспечивает возможность осуществления непрерывного процесса и получения высококачественного порошка титана, пригодного как для выплавки титана и сплавов на его основе, так и для использования в порошковой металлургии.

Недостатком прототипа являются нарушения процесса из-за прекращения фонтанирования магния в результате снижения зоны реакции до уровня фонтанирующего устройства и обусловленного этим зарастания титановой губкой фонтанирующего устройства.

Техническим результатом является исключение нарушения процесса из-за зарастания титановой губкой фонтанирующего устройства.

Этот результат достигается тем, что предложен непрерывный способ получения металлического титана восстановлением тетрахлорида титана жидким магнием в реакторе, выполненном в виде вертикальной трубы, включающий подачу жидкого магния вертикальной струей вверх в виде фонтана навстречу парам тетрахлорида титана с исключением попадания магния на стенки реактора, согласно изобретению пары тетрахлорида титана подают со скоростью, необходимой для его расходования в верхней части фонтана при контролировании давления и температуры на различной высоте реактора.

Способ осуществляется следующим образом.

В котел, герметично соединенный с реактором (реакционной камерой) и снабженный циркуляционным центробежным насосом, после заполнения инертным газом загружают жидкий магний. При температуре магния в котле выше температуры плавления хлорида магния (760-840oC) включают центробежный насос, подающий струю магния вертикально вверх в виде фонтана в реакционную камеру, выполненную в виде вертикальной трубы, диаметр и высота которой достаточны, чтобы исключить попадание фонтанируемого магния на стенки. В верхнюю часть реакционной камеры подают парообразный тетрахлорид титана в таком количестве, чтобы он полностью израсходовался в зоне реакции. Расход тетрахлорида титана контролируется по давлению и температуре на различной высоте реакционной камеры.

Процесс восстановления тетрахлорида титана магнием экзотермичен, после установления стационарного режима обогрев котла и реакционной камеры не требуется. В результате циркуляции магния обеспечивается интенсивный отвод тепла, что позволяет обеспечить высокую производительность.

Слив жидкого хлорида магния с порошкообразным титаном и догрузку в котел магния осуществляют периодически, контролируют по уровню магния в котле.

Пример. В котел диаметром 800 мм, высотой 1900 мм, снабженный реакционной камерой диаметром 530 мм, высотой 3400 мм и центробежным насосом производительностью 0,2 м3/ч, загрузили 1200 кг магния. При 840oC включили насос. Высота фонтана 2,6 м. Парообразный тетрахлорид титана подавали в реакционную камеру через верхнюю крышку с такой скоростью, чтобы он успевал израсходоваться в верхней части фонтанируемого магния. О расположении зоны реакции судили по показаниям термопар, закрепленных на разной высоте реакционной камеры.

Сливы хлорида магния с порошкообразным титаном и догрузку жидкого магния производили через каждые 3-4 ч. В таблице приведен гранулометрический состав полученного порошкообразного титана.

Формула изобретения

Непрерывный способ получения металлического титана восстановлением тетрахлорида титана жидким магнием в реакторе, выполненном в виде вертикальной трубы, включающий подачу жидкого магния вертикальной струей вверх в виде фонтана навстречу парам тетрахлорида титана с исключением попадания магния на стенки реактора, отличающийся тем, что пары тетрахлорида титана подают со скоростью, необходимой для его расходования в верхней части фонтана, при контролировании давления и температуры на различной высоте реактора.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к металлургии, а именно к способам восстановления тетрафторида урана кальциетермическим способом

Изобретение относится к металлургии, в частности к способу получения элемента или металла, или их сплава из галогенида, или его смесей

Изобретение относится к области металлургии цветных металлов, в частности кобальта

Изобретение относится к способу получения тантала и ниобия из их химических соединений, включающему восстановление щелочным металлом и последующее выщелачивание остатка щелочного металла из порошков тантала и ниобия, полученных в элементарном состоянии
Изобретение относится к цветной металлургии, в частности к способам получения губчатого титана магниетермическим восстановлением

Изобретение относится к способу получения чистого ниобия, включающему восстановительную плавку пятиокиси ниобия с алюминием и кальцием и последующий многократный электронно-лучевой рафинировочный переплав

Изобретение относится к металлургии тугоплавких соединений, а именно к способу получения карбида титана, включающему восстановление смеси тетрахлоридов титана и углерода

Изобретение относится к металлургии, в частности к способу получения ниобия и сплавов на его основе, алюмотермическим восстановлением при высокой температуре в присутствии добавок

Изобретение относится к металлургии для получения редких и редкоземельных металлов, сплавов и лигатур редкоземельных и переходных металлов методом металлотермического восстановления

Изобретение относится к металлургии с получением сплавов редкоземельных и редких металлов методом кальциетермического восстановления и может использоваться для получения сплавов и лигатур состава железо-ниодим-бор и других, служащих для изготовления высокоэнергетических магнитов
Изобретение относится к гидрометаллургии редких металлов и может быть использовано в технологии извлечения скандия из отходов производства титана и циркония, при очистке скандиевых концентратов от титана

Изобретение относится к способу получения окислов тугоплавких металлов из лопаритового концентрата

Изобретение относится к цветной металлургии, в частности к способам очистки губчатого титана вакуумной сепарацией

Изобретение относится к металлургии, в частности к способу получения элемента или металла, или их сплава из галогенида, или его смесей

Изобретение относится к гидрометаллургической переработке лопаритового концентрата
Изобретение относится к технологии минерального и техногенного сырья, которое используется для получения соединений титана, ниобия, тантала и редкоземельных элементов

Изобретение относится к цветной металлургии, в частности к устройствам для очистки губчатого титана вакуумной сепарацией

Изобретение относится к гидрометаллургической переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата
Изобретение относится к цветной металлургии, в частности к способам получения губчатого титана магниетермическим восстановлением
Изобретение относится к металлургии титана и может быть использовано при переработке титансодержащего сырья хлорным методом
Изобретение относится к цветной металлургии, в частности к подготовке сырья для хлорирования
Наверх