Способ исследования проводящей поверхности

 

Изобретение относится к контролю качества поверхностей твердых тел оптическими методами, а именно к обнаружению дефектов и микрообъектов на плоских поверхностях проводящих и полупроводящих изделий путем регистрации эффективности возбуждения поверхностных электромагнитных волн (ПЭВ), и может найти применение в оптическом приборостроении, экологическом мониторинге, в физических, химических, медико-биологических и других исследованиях. Сущность изобретения заключается в том, что в способе исследования проводящей поверхности, включающем воздействие на исследуемую поверхность образца пучком сколлимированного линейно поляризованного монохроматического излучения, выбор ориентации плоскости поляризации излучения, возбуждение этим излучением на поверхности образца ПЭВ, регистрацию отраженного излучения, расчет распределения контролируемого оптического параметра слоя на поверхности по результатам измерений, плоскость поляризации падающего излучения выбирают наклоненной на угол 0 относительно плоскости падения, в поперечном сечении пучка отраженного излучения измеряют пространственное распределение угла наклона плоскости поляризации отраженного излучения относительно плоскости падения, компенсируя для каждой контролируемой точки сечения фазовый сдвиг между р- и s-составляющими излучения, возникающий при возбуждении ПЭВ, а регулирование пределов измерений осуществляют изменением величины угла 0. Техническим результатом является повышение точности определения контролируемого параметра. 2 ил.

Изобретение относится к области контроля качества поверхностей материалов оптическими методами, а именно к обнаружению дефектов и микрообъектов на плоских поверхностях проводящих и полупроводящих изделий путем регистрации отличия эффективности возбуждения поверхностных электромагнитных волн (ПЭВ) на участках поверхности с неоднородностями от условий возбуждения ПЭВ на однородных участках поверхности, и может найти применение в оптическом приборостроении, в физических, химических, медико-биологических и других исследованиях.

Известен оптический способ исследования поверхностей твердых тел со сверхвысоким вертикальным разрешением, получивший название ПЭВ-микроскопия, позволяющий исследовать переходные слои и заключающийся в том, что на исследуемую поверхность образца воздействуют сколлимированным пучком p-поляризованного монохроматического излучения, возбуждают этим излучением на поверхности ПЭВ, регистрируют пространственное распределение интенсивности I излучения в отраженном пучке и по распределению I рассчитывают распределение контролируемого оптического параметра слоя по поверхности [1-3]. Основным недостатком известного способа являются низкая точность измерений и невозможность регулирования пределов измерений.

Наиболее близким по технической сущности к заявляемому способу является способ исследования поверхности полупрозрачного образца методом ПЭВ-микроскопии [4]. В этом способе на исследуемую поверхность образца воздействуют набором сколлимированных пучков p-поляризованного монохроматического излучения с различными длинами волн 0, возбуждают этими пучками на поверхности ПЭВ на данных 0, регистрируют пространственное распределение интенсивности I отраженного излучения во всех пучках одновременно (для обеспечения возможности выбора необходимых пределов измерений) и по распределению I в пучках рассчитывают распределение контролируемого оптического параметра слоя по поверхности. Основными недостатками этого способа являются низкая точность определения параметров слоя (например, точность определения его эффективной толщины не превышает 1 нм) и необходимость использования набора источников излучения с различными длинами волн, что затрудняет реализацию способа и понижает его точность вследствие наличия дисперсии у материалов направляющей ПЭВ структуры.

Сущность изобретения заключается в том, что в способе исследования проводящей поверхности, включающем воздействие на исследуемую поверхность образца пучком сколлимированного линейно поляризованного монохроматического излучения, выбор ориентации плоскости поляризации излучения, возбуждение этим излучением на поверхности образца ПЭВ, регистрацию отраженного излучения, расчет распределения контролируемого оптического параметра слоя на поверхности по результатам измерений, плоскость поляризации падающего излучения выбирают наклоненной на угол 0 относительно плоскости падения, в поперечном сечении пучка отраженного излучения измеряют пространственное распределение угла наклона плоскости поляризации отраженного излучения относительно плоскости падения, компенсируя для каждой контролируемой точки сечения фазовый сдвиг между p- и s-составляющими излучения, возникающий при возбуждении ПЭВ, а регулирование пределов измерений осуществляют изменением величины угла 0. Существенное повышение точности определения оптических параметров переходного слоя на исследуемой поверхности при применении заявляемого способа по сравнению с другими известными способами, основанными на использовании ПЭВ, объясняются более сильной зависимостью угла от параметров слоя по сравнению с аналогичной зависимостью коэффициента отражения для p-составляющей зондирующего излучения. Возможность же регулирования пределов измерений в заявляемом способе основана на зависимости чувствительности величины угла к вариациям параметров переходного слоя от угла 0. Оба утверждения базируются на известном явлении поворота плоскости поляризации линейно поляризованного света, возбуждающего ПЭВ, при условии компенсации фазового сдвига между p- и s-составляющими излучения, возникающего при отражении света от направляющей ПЭВ структуры [5]. Это явление позволяет выполнять поляриметрическое детектирование фотонного возбуждения ПЭВ. В работе [5] получена формула, устанавливающая взаимосвязь между эффективностью возбуждения ПЭВ , энергетическим коэффициентом отражения для p-составляющей зондирующего излучения Rр, а также значениями углов и 0: Справедливость обоих утверждений подтверждена также приведенными ниже расчетами, выполненными для конкретной структуры, содержащей проводящую поверхность с переходным слоем.

Заявляемый способ может быть реализован на серийном эллипсометре, работающем по схеме PCSA (поляризатор-компенсатор-образец-анализатор) или PSCA (поляризатор-образец-компенсатор-анализатор), позволяющем измерять величину угла с точностью до одной угловой минуты [6]. Причем в качестве образца следует выбрать оптическую волноведущую структуру, содержащую исследуемую проводящую поверхность и выполненную по одной из схем метода нарушенного полного внутреннего отражения (НПВО): по схеме Кречманна или по схеме Отто [7, 8] . Кроме того, измерения следует выполнять при фиксированном угловом положении поляризатора (точнее, его можно изменять только при выборе пределов измерений) и регулируемых угловых положениях компенсатора (роль которого в эллипсометре выполняет четвертьволновая пластинка) и анализатора.

Способ осуществляется следующим образом. Над исследуемой проводящей поверхностью, по одной из схем метода НПВО, размещают призму с показателем преломления, превышающим показатель преломления окружающей среды. При этом плоское основание призмы должно быть ориентировано параллельно поверхности и отделено от нее зазором величиной меньше глубины проникновения поля ПЭВ в вещество, заполняющее зазор. Выполнение последнего условия обеспечивает включение исследуемой поверхности в направляющую ПЭВ волноведущую структуру. Сформированную структуру размещают в центре предметного столика эллипсометра и направляют на боковую грань призмы луч зондирующего излучения под таким углом, чтобы, отражаясь внутри призмы от ее основания, оно возбуждало в структуре ПЭВ. Затем устанавливают поляризатор в такое угловое положение, при котором его плоскость пропускания наклонена относительно плоскости падения на угол 0. Путем поочередного поворота анализатора и компенсатора добиваются полного гашения отраженного излучения (методика гашения света с эллиптической поляризацией отработана в эллипсометрии и известна как "нулевая" [6] ). Так как при фиксированном поляризаторе полное гашение отраженного излучения анализатором может быть достигнуто только при условии, что оно является плоско поляризованным (т.е. при условии компенсации фазового сдвига между p- и s-составляющими излучения, возникающего при возбуждении ПЭВ), то плоскость пропускания анализатора в этом случае перпендикулярна к плоскости поляризации отраженного излучения. Зная значение азимута анализатора A, соответствующее полному гашению отраженного излучения и отсчитываемое от плоскости падения, рассчитывают величину угла наклона плоскости поляризации отраженного излучения относительно плоскости падения по формуле: = A-90. Располагая предварительно рассчитанной зависимостью величины угла от контролируемого оптического параметра переходного слоя, например, от его толщины dа, по измеренному значению определяют величину параметра слоя в данной точке поверхности. Выполнив аналогичные измерения и расчеты для других точек поверхности, получают картину распределения контролируемого параметра переходного слоя по поверхности.

Отметим, что компенсация фазового сдвига между p- и s-составляющими излучения, возникающего при возбуждении ПЭВ, может быть осуществлена различными способами, простейшим из которых является пропускание эллиптически поляризованного света (коим и является отраженное волноведущей структурой излучение с асинхронно изменяющимися p- и s-составляющими) через поворачивающуюся четвертьволновую пластинку, выполненную из анизотропного кристалла, оптическая ось которого ориентирована перпендикулярно направлению распространения света [9].

В качестве примера рассмотрим применение заявляемого способа для визуализации с помощью монохроматического излучения с 0 = 0,60 мкм решетки из LiF с показателем преломления nа = 1,39 толщиной dа, сформированной на поверхности медной пленки с показателем преломления n1 = 0,186 и показателем поглощения k1 = 2,980 толщиной 50,0 им, нанесенной на основание призмы с показателем преломления nр = 1,51, окружающая среда - воздух. В данной волноведущей структуре обеспечивается 100% эффективность возбуждения ПЭВ при угле падения излучения на основание призмы = 0 = 44o50' и dа = 0, что подтверждается ходом расчетной зависимости Rр(), приведенной на фиг.1(а). Поляриметрический способ определения эффективности фотонного возбуждения ПЭВ позволяет получить для данной структуры (при dа = 0) семейство кривых (), соответствующих различным углам 0 наклона плоскости поляризации падающего излучения относительно плоскости падения и приведенных на фиг.1(б). Анализ хода кривых на фиг.1 позволяет утверждать, что, при 0 < 30o , угол более чувствителен к эффективности возбуждения ПЭВ по сравнению с коэффициентом отражения Rр.

На фиг. 2 приведены расчетные зависимости Rр(dа) и (dа) для рассматриваемой структуры при = 0. Анализ приведенных на чертеже кривых показывает, что заявляемый способ позволяет: 1) регулировать верхний предел измерений контролируемого параметра решетки dа путем изменения угла 0 (в данном примере - от 4 нм при 0 = 1o до 10 нм при 0 = 30o); 2) более точно определять величину контролируемого параметра решетки, так как точность измерения Rр в способе-прототипе составляет ~ 1% (что позволяет определять значение dа с точностью до 0,5 нм), а точность измерения угла с помощью серийного эллипсометра ~ 1', т.е. ~ 0,1% от максимального значения (что позволяет определять эффективное значение dа при 0 = 1o с точностью до 0,001 нм, а при 0 = 30o - с точностью до 0,03 нм).

Таким образом, заявляемый способ повышает, по сравнению со способом-прототипом, точность определения контролируемого параметра переходного слоя на 1-2 порядка и упрощает регулирование пределов измерений.

Источники информации: 1. Rothenhausler В. , Knoll W. Surface-plasmon microscopy // Nature, 1988, v. 332, N 6165, p. 615- 617.

2. Либенсон М. Н. , Диденко И.А. Оптическая микроскопия сверхвысокого разрешения // Оптический Вестник, 1992, N 5-6, с. 1-2.

3. Тищенко А. А., Никитин А.К. ПЭВ в оптической микроскопии // Вестник РУДН (сер. Физика), 1993, N 1, с. 114-121.

4. Никитин А.К. Способ исследования поверхности полупрозрачного образца методом ПЭВ-микроскопии // Патент РФ на изобретение N 2097747 от 27. Х1.1997г. (Прототип) 5. Никитин А. К., Логинов А.П., Головцов Н.И. О вращении плоскости поляризации света, возбуждающего ПЭВ // Вестник РУДН (сер. Физика), 1997, N 5, с. 109-115.

6. Ржанов А.В., Свиташев К.К., Семененко А.И., Семененко Л.В., Соколов В.К. Основы эллипсометрии // Новосибирск, 1978. - 424 с.

7. Никитин А.К., Тищенко А.А. Поверхностные электромагнитные волны и их применения // Зарубежная радиоэлектроника, 1983, N 3, с. 38-56.

8. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред. Под ред. В.М.Аграновича и Д.Л.Миллса // М.: Наука, 1985. - 525 с.

9. Васильев Б.И. Оптика поляризационных приборов // М., 1969. - 208 с.

Формула изобретения

Способ исследования проводящей поверхности, включающий воздействие на исследуемую поверхность образца пучком сколлимированного линейно поляризованного монохроматического излучения, выбор ориентации плоскости поляризации излучения, возбуждение этим излучением на поверхности образца поверхностных электромагнитных волн (ПЭВ), регистрацию отраженного излучения и расчет распределения контролируемого оптического параметра слоя на поверхности по результатам измерений, отличающийся тем, что плоскость поляризации падающего излучения выбирают наклоненной относительно плоскости падения на угол o, в поперечном сечении пучка отраженного излучения измеряют пространственное распределение угла наклона плоскости поляризации отраженного излучения относительно плоскости падения, компенсируя для каждой контролируемой точки сечения фазовый сдвиг между p- и S-составляющими излучения, возникающий при возбуждении ПЭВ, а регулирование пределов измерений осуществляют изменением величины угла o.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к телевизионной микроскопии и может быть использовано в промышленности при автоматизации контроля качества и, особенно, криминалистике для проведения баллистических экспертиз пуль стрелкового оружия, а также создания и хранения банка данных пулетек для последующей идентификации оружия по следам на пулях

Изобретение относится к устройствам для контроля геометрических размеров и дефектов типа посечек, сколов, трещин стеклоизделий

Изобретение относится к контрольно-измерительной технике и может быть использовано для обнаружения на поверхности деталей дефектов различного происхождения: механических, цветности, посторонних включений в структуру материала детали

Изобретение относится к контролю качества поверхности оптическими методами и может найти применение в оптическом приборостроении, например, для контроля качества подготовки поверхностей подложек интегрально-оптических устройств, лазерных зеркал и т.д

Изобретение относится к устройствам для обнаружения поверхностных дефектов на цилиндрических объектах, таких как топливные таблетки атомных электростанций

Изобретение относится к области контроля качества поверхностей материалов оптическими методами, а именно к обнаружению дефектов и других микрообъектов на плоских поверхностях проводящих и полупроводящих изделий путем регистрации отличия условий возбуждения поверхностных электромагнитных волн (ПЭВ) на участках поверхности с неоднородностями от условий возбуждения ПЭВ на однородных участках поверхности изделия, и может найти применение в оптическом приборостроении, в физических, химических, медико-биологических и других исследованиях
Изобретение относится к методам дефектоскопии, применяемым в микроэлектронной, оптико-механической и оборонной промышленности для контроля качества высококлассных поверхностей, с шероховатостью менее 10-2 мкм, прозрачных и непрозрачных материалов, включая оптические, монокристаллические и металлические поверхности

Изобретение относится к обработке прозрачных камней, преимущественно с большим показателем преломления, например алмазов, а именно к способам определения положения дефекта в кристаллах и заготовках после разных технологических операций

Изобретение относится к контрольно-измерительной технике и может быть использовано для обнаружения на поверхности контролируемых объектов (КО) дефектов различного происхождения

Изобретение относится к исследованию и анализу физического состояния объектов сложной формы с помощью оптических средств, в частности к определению рельефа таких объектов, как стреляные пули и гильзы

Изобретение относится к контрольно-измерительной технике и может быть использовано для диагностики усталостного износа металлоконструкций (МК) и прогнозирования остаточного ресурса

Изобретение относится к устройству контроля листовой упаковки, которое позволяет обнаружить посторонние примеси, повреждения и/или загрязнения таблетки, которые могут появиться в процессе листовой упаковки таблетки, посредством бесконтактного контроля ее внешнего вида

Изобретение относится к области контрольно-измерительной техники и может быть использовано для определения концентрации металлосодержащих аэрозолей в воздушной атмосфере

Изобретение относится к области оптико-электронного приборостроения, а конкретно к телевизионной микроскопии

Изобретение относится к способу выявления дефектов, возникающих у предметов в процессе их хранения

Изобретение относится к области атомной промышленности, а именно к производству тепловыделяющих элементов энергетических ядерных реакторов типа ВВЭР-1000, ВВЭР-440

Изобретение относится к измерительной технике
Наверх