Способ переработки титансодержащих материалов

 

Изобретение относится к цветной металлургии, в частности к способам переработки титансодержащего сырья, и может быть использовано при переработке титансодержащего шлака. Способ предусматривает выщелачивание титансодержащего шлака азотной кислотой в две стадии. На первой стадии обработку ведут при температуре 70-95°С с получением твердого титансодержащего осадка, на второй этот осадок обрабатывают раствором каустической щелочи при температуре 60-90° С с получением жидкого стекла и обогащенного по диоксиду титана продукта. Обработку осадка раствором щелочи проводят при молярном отношении Na2O : SiO2, равном 0,25-1,0. Способ обеспечивает высокую степень извлечения диоксида титана и концентрирование его в получаемом продукте, кроме того, из шлака дополнительно извлекается кремнезем с получением жидкого стекла, пригодного для использования в промышленности. 1 з.п. ф-лы, 1 табл.

Изобретение относится к цветной металлургии, в частности к способам переработки титансодержащего сырья, и может быть использовано при переработке титансодержащего шлака.

Известен способ получения обогащенного титанового продукта из перовскита, [В. П. Петров и др. Комплексное использование минерального сырья. Алма-Ата, 1992, N 3, с. 51].

Измельченный концентрат обрабатывают азотной, а затем соляной кислотой для удаления железа.

Недостатками способа являются невысокая степень обогащения продукта по титану, использование соляной кислоты, сложность оборудования и утилизации хлорного железа.

В качестве прототипа выбран способ обогащения (по титану) перовскитового концентрата, включающий разложение концентрата 50%-ным раствором азотной кислоты при повышенном давлении (высоких температурах) [В.М.Кострикин и др. Автоклавное вскрытие перовскитового концентрата. В сб. Минеральное сырье. М. , Наука, 1966 г. вып. 13. с. 63-69].

В результате обработки концентрата, содержащего 47,9% TiO2, азотной кислотой при температуре 105oC (режим кипения) удается повысить концентрацию диоксида титана в обогащенном продукте до 73%.

Недостатком этого приема является низкая степень обогащения и выделение оксидов азота в окружающую среду, ибо при 100oC и выше азотная кислота разлагается.

При обработке концентрата кислотой в автоклавах при 150 и 200oC содержание диоксида титана в продукте повышается соответственно до 85 и 87%.

Недостатки способа: высокое содержание железа (до 10%) в обогащенном продукте, что осложняет последующую переработку его известными методами, применение сложного оборудования и значительные затраты энергии.

Задачей, решаемой предлагаемым изобретением, является повышение степени обогащения (по титану) исходного сырья, осуществление процесса при температурах ниже 100oC, увеличение степени использования сырья.

Поставленная задача решается тем, что в известном способе переработки титансодержащего материала, включающем преимущественно обработку титанистого шлака азотной кислотой при атмосферном давлении, согласно изобретению, обработку ведут в две стадии. На первой стадии шлак разлагается азотной кислотой при температуре 70-95oC с получением твердого титансодержащего осадка, который на второй стадии обрабатывают раствором каустической щелочи при температуре 60-90oC и получают раствор жидкого стекла и обогащенный по диоксиду продукт. Отработку осадка раствором каустической щелочи проводят при молярном отношении Na2O : SiO2, равном 0,25- 1,0.

Способ осуществляли следующим образом.

Доменный шлак после измельчения на первой стадии обрабатывали в аппарате с механическим перемешиванием 30%-ным раствором азотной кислоты (с избытком 20% против стехиометрии) при Ж:Т= 4-5 в интервале температур 70-95oC в течение 4-6 час. Затем пульпу фильтровали, осадок промывали водой и далее обрабатывали раствором каустической щелочи при Ж:Т = 9-10 в интервале температур 60-90oC. При этом получали раствор силиката натрия с модулем 2-3 и обогащенный продукт по диоксиду титана. Продукт после промывки водой сушили для удаления влаги и направляли на химический анализ.

Опытами установлено, что на первой стадии титансодержащие соединения сложного состава при обработке азотной кислотой разлагаются. При этом щелочноземельные металлы, часть железа и алюминия переходят в раствор, а кремний остается в осадке.

Титан ведет себя следующим образом. Вначале он переходит в раствор, а затем - в твердую фазу в виде метатитановой кислоты (гидрооксида титана), которая остается в осадке вместе с кремнеземом и оставшейся частью оксидов железа, кальция, алюминия и магния.

При обработке такого осадка на второй стадии раствором щелочи кремнезем на 80-90% переходит в раствор в виде силиката натрия, а гидрооксид титана и указанные оксиды остаются в твердой фазе.

Для повышения перехода кремнезема в раствор количество щелочи дозируют из расчета получения в нем молекулярного отношения Na2O : SiO2, равного 0,25-1,0, и раствора с кремневым модулем 2-3.

Опыты проводились со шлаком следующего состава, мас.% : 10,8 TiO2; 25,9 SiO2; 15,2 Al2O3; 32,4 CaO; 11,5 MgO; 1,5 FeO и 0,5 MnO.

Из таблицы видно, что при обработке кислотой (первая стадия) с увеличением температуры повышается извлечение диоксида титана в твердую фазу. Однако при температуре ниже 70oC разложение шлака происходит менее 80%. При температуре выше 95oC разложение выше 85%, но при этом начинают выделяться в атмосферу пары оксидов азота.

На второй стадии с повышением температуры от 70 до 95oC концентрация диоксида титана в продукте увеличивается, а затем снижается.

При температуре ниже 60oC в продукте остается много кремнезема, который медленно реагирует с раствором каустика. При температуре выше 90oC содержание диоксида титана снижается, так как образуется титанат натрия. Оксид натрия загрязняет продукт и осложняет его переработку кислотными методами.

При обработке кислотой при 90oC и раствором каустика при 80oC был получен продукт, содержащий, вес.%: 89,5 TiO2; 7,4 SiO2; 0,26 Al2O3; 0,19 CaO; 0,24 MgO; 2,21 Fe2O3; 0,15 Na2O.

Преимущества предлагаемого способа: - снижается расход энергии за счет переработки шлака при температуре ниже 100oC; - упрощается оборудование; - достигается высокая степень извлечения диоксида титана и концентрирование его в получаемом продукте; - из шлака дополнительно извлекается кремнезем с получением жидкого стекла, пригодного для целого ряда отраслей народного хозяйства.

Формула изобретения

1. Способ переработки титансодержащих материалов, включающий обработку исходного материала азотной кислотой, отличающийся тем, что в качестве исходного материала используют титансодержащие шлаки, а обработку проводят в две стадии, при этом на первой стадии обработку азотной кислотой ведут при температуре 70-95°С с получением твердого титансодержащего осадка, а на второй этот осадок обрабатывают раствором каустической щелочи при температуре 60-90°С с получением жидкого стекла и обогащенного по диоксиду титана продукта.

2. Способ по п. 1, отличающийся тем, что обработку осадка раствором щелочи проводят при молярном отношении Na2O : SiO2, равном 0,25-1,0.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к неорганической химии, в частности к способам получения диоксида титана парофазным окислением галогенидов
Изобретение относится к цветной металлургии, в частности к подготовке сырья для хлорирования

Изобретение относится к новым частицам диоксида титана, обладающим солнцезащитными свойствами и используемым в косметических составах

Изобретение относится к получению диоксида титана по хлоридной технологии и может быть использовано при получении пигментов для лакокрасочной промышленности, а также в других отраслях промышленности - при производстве бумаги, искусственных волокон и пластмасс

Изобретение относится к гидрометаллургической переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата

Изобретение относится к способам получения диоксида титана

Изобретение относится к способу получения диоксида титана путем гидролиза растворов алкоксидов титана

Изобретение относится к фторидной технологии переработки титансодержащего сырья и может быть использовано для получения титанового и железооксидного пигментов высокой чистоты

Изобретение относится к неорганической химии, а именно к способам получения диоксида титана, который находит широкое применение в составе эмалей, вододисперсионных и полиграфических красок, жаропрочных стекол, керамики, пьезоматериалов и т.д

Изобретение относится к новым соединениям титаната натрия, предназначенным для использования в качестве ионита для стронция
Изобретение относится к получению диоксида титана парофазным окислением галогенидов
Изобретение относится к химической технологии неорганических веществ, в частности к технологии титансодержащих продуктов, используемых в кожевенной, лакокрасочной промышленности, в производстве бумаги и т.д
Изобретение относится к гидрометаллургической переработке рудных концентратов, а именно к переработке лопаритового и других титансодержащих концентратов

Изобретение относится к области экологии, в частности к обезвреживанию промышленных отходов, и может быть использовано для обезвреживания хлорорганических отходов диоксиноподобных соединений, например полихлордифенилов
Изобретение относится к технологии переработки титансодержащего сырья

Изобретение относится к химической технологии неорганических материалов, в частности титансодержащих пигментных композиций, которые используются в производстве бумаги, пластмасс, а также лакокрасочных материалов различного назначения

Изобретение относится к способу получения диоксида титана с помощью взаимодействия паров тетрахлорида титана с кислородом и к усовершенствованному реактору для использования в такой системе
Наверх