Коаксиальный смесительный элемент-горелка типа "гомогенизированный газ-газ" для камер сгорания высокопроизводительных генераторов синтез-газа

 

Изобретение относится к синтезу, а именно к устройствам и технологии переработки углеводородного сырья в синтез-газ, и может быть использовано при получении синтез-газа по методам равновесного и неравновесного парциального окисления. Коаксиальный смесительный элемент-горелка типа "гомогенизированный газ-газ" для камер сгорания высокопроизводительных генераторов синтез-газа nH2 + СО содержит охлаждаемый цилиндрический корпус, охлаждаемое торцевое днище, узлы подвода газообразных горючего и окислителя, узлы подачи и отвода охлаждающего компонента, внутренние тракты раздельной подачи газообразных окислителя и горючего. При этом он содержит устройство гомогенизации, выполненное в виде цилиндрических, снабженных ребрами, расположенных одна над другой и состыкованных по вершинам ребер оболочек, при этом внутренняя оболочка оснащена ребрами снаружи, а внешняя оболочка оснащена ребрами изнутри. Использование данного изобретения обеспечивает надежное, без возгораний, получение гомогенной смеси окислителя и горючего в камере минимального объема до подачи их в реакционную зону. 3 з.п.ф-лы, 3 ил.

Изобретение относится к области органического синтеза, а именно к устройствам и технологии переработки углеводородного сырья в синтез-газ (nH2 + СО), и может быть использовано при получении синтез-газа по методам равновесного, но преимущественно неравновесного парциального окисления предварительно перемешанных газообразных углеводородного горючего и кислородосодержащего окислителя.

Известны горелки с предварительным перемешиванием газообразных углеводородного горючего и окислителя, предложенные компаниями Тексако (патент США 3945942, 252-373, МКИ С 01 В 1/16, 23.03.76), Монтекатини (патент США 2859103, 48-196, 04.11.58), Французским институтом нефти (патент США 4582630, 252-373, МКИ С 01 В 3/36, 15.04.86, патент Франции 2617577, МКИ F 23 D 14/46, 15.06.80).

В известных горелках компании Тексако и Французского института нефти осуществлена частичная гомогенизация смеси метана и окислителя до их ввода в реакционную зону путем подачи одного из компонентов по трубкам, размещенным на входе или в тракте перепускных отверстий, или сопел, при этом в перепускные отверстия или в сопла подается второй компонент.

В патенте Монтекатини гомогенизация осуществляется в гладком цилиндрическом канале со шнеком (завихрителем), но конструкция предназначена только для процессов, осуществляемых при низком (атмосферном) давлении.

Предложенные в указанных патентах смесительные элементы-горелки гомогенного типа, теоретически наиболее перспективны для проведения процессов парциального окисления, но на практике не получили распространения в высокоскоростных генераторах (реакторах) из-за низкой их надежности. При запуске высокоскоростных генераторов (реакторов), как известно, происходит заброс давления в реакционной зоне, а соответственно и выброс пламени во внутренний объем горелки, что приводит к ее подгару и возможному возгоранию. Кроме этого, предложенные смесительные элементы-горелки не обеспечивают организацию высокоэффективных по выходным параметрам процессов неравновесного, высокоскоростного, парциального окисления углеводородного газа в реакционной зоне высокопроизводительных и высокоскоростных генераторов (реакторов) синтез-газа при средних и высоких давлениях.

Известна многофункциональная коаксиальная горелка для реакторов синтез-газа, которая представлена в патенте Великобритании 2219003, НКИ C5E, МКИ С 01 В 3/36, 29.11.89 (заявитель компания Шелл), принятая в качестве прототипа. Она содержит пять концентричных каналов осевого ввода конвертируемых газов, жидкофазных углеводородов и твердого пылевидного горючего (угля), но последние два компонента могут и отсутствовать. При отсутствии двух последних компонентов горелка представляет собой коаксиальную горелку типа "газ-газ", имеющую пять зон ввода конвертируемых газов. Интенсификация перемешивания конвертируемых компонентов достигнута заданием существенно различных осевых скоростей для каждой из пяти зон. При этом окислитель подается, например, через первую и третью зоны со скоростью 50-150 м/с, природный газ подается через центральную и четвертую периферийную зоны со скоростью 5-84 м/с, а через вторую периферийную зону со скоростью 0-15 м/с подается смесь газов с низким содержанием углеводородной составляющей (например, смесь природного газа и CO2). Многофункциональная коаксиальная горелка по данному патенту предназначена для использования в генераторах синтез-газа с отношением H2/CO = 1 - 1,6, работающих при давлении до 12,0 МПа (преимущественно при 4,0 МПа) и при средней температуре 1400oC, формируя аппарат идеального смешения.

Известные решения использованы в реакторах (конверторах), работающих по схеме идеального смешения за счет организаций макровихревых циркуляционных течений почти во всем реакционном объеме.

Целью настоящего изобретения является создание коаксиального смесительного элемента-горелки, обеспечивающего: - надежное, без возгораний, получение гомогенной смеси окислителя и горючего в камере минимального объема до подачи их в реакционную зону; - ввод гомогенной смеси в высокоскоростную реакционную зону сгорания среднего и высокого давления, работающую по прямоточной схеме, со скоростями, обеспечивающими стабильную структуру и определенную интенсивность микровихрей в зоне торцевого днища смесительного элемента и в начальных зонах реакционного объема (в зоне фронта пламени), необходимые для достижения максимальной полноты процесса окисления при минимальном времени пребывания потока в реакционной зоне.

Поставленная цель достигается тем, что в коаксиальном смесительном элементе-горелке, содержащем цилиндрический охлаждаемый корпус, охлаждаемое торцевое днище, узлы подвода окислителя и горючего с добавкой к ним газов - корректоров состава H2O, CO2 или без них, узел подвода и отвода охлаждающего компонента, внутренние тракты окислителя и горючего, выполнено устройство гомогенизации окислителя и горючего в виде двух расположенных одна под другой цилиндрических оболочек, снабженных ребрами и состыкованных по вершинам ребер, при этом из них внутренняя оболочка имеет наружное многозаходное, винтовое, например, правое оребрение, а внешняя оболочка имеет внутреннее, многозаходное, винтовое оребрение противоположной направленности (левое). Каналы оребрения в обеих оболочках имеют эквивалентный гидравлический диаметр dг= 1,5 - 5 мм, одинаковый или разный профиль, например прямоугольный, трапецеидальный, треугольный или круглый. Между собой оболочки свободно, без пайки, но с натягом состыкованы по вершинам ребер, при этом образована перекрестная система каналов для прохода компонентов со множеством малого объема камер турбулентного смешения и гомогенизации окислителя и горючего. Стабильная и развитая зона микровихрей в зоне торцевого днища (на начальных участках реакционного объема - в зоне горения), обеспечивающая высокую интенсивность и полноту процесса конверсии, при высоких скоростных параметрах, реализуется отношением суммарной площади каналов по сечению ввода гомогенизированной смеси в реакционную зону к свободной, непроницаемой площади торцевого днища, равной 0,02-0,1.

Гомогенизирующее смесь компонентов устройство гомогенизации коаксиального смесительного элемента-горелки одновременно выполняет и функции теплоемкостного пламягасителя. Обе оболочки его выполнены высокотеплоемкостных сплавов на основе меди и никеля, меди или никеля.

На фиг. 1 представлен общий вид коаксиального смесительного элемента; на фиг. 2 - вид с торца коаксиального смесительного элемента с фиг. 1; на фиг. 3 - модификация коаксиального смесительного элемента с числом вводов гомогенизированной смеси окислителя и горючего, больше одного.

Коаксиальный смесительный элемент-горелка (см. фиг. 1) содержит охлаждаемый цилиндрический корпус 1, охлаждаемое торцевое днище 2, узлы подвода компонентов 3 и 4, узлы подвода и отвода охладителя 5, снабженные ребрами оболочки 6 и 7, которые состыкованы по вершинам ребер и расположены одна над другой. Отношение суммарной площади коаксиальных оребренных каналов по сечению ввода гомогенизированной смеси к свободной площади торцевого днища составляет 0,02...0,1.

Характерный размер коаксиального смесительного элемента-горелки - это наружный диаметр торцевого днища D (см. фиг. 1), лежащий в пределах 60...180 мм.

На фиг. 3 показана модификация коаксиального смесительного элемента - горелки с числом вводов гомогенизированной смеси горючего и окислителя в камеру сгорания генератора синтез-газа, больше одного.

В каждом из вводов гомогенизированной смеси установлено описанное устройство гомогенизации, а отношение суммарной площади проходных сечений каналов к свободной площади торцевого днища также, как и в основном смесительном элементе, представленном на фиг. 1, равно 0,02...0,1.

Коаксиальный смесительный элемент-горелка типа "гомогенизированный газ-газ" работает следующим образом. Газообразный окислитель (кислород, воздух, воздух, обогащенный по кислороду) поступает через ввод 4 в цилиндрическую полость, а из нее - в устройство гомогенизации, образующее многочисленные микрокамеры смешения компонентов в результате состыковки оболочек 6,7, снабженных ребрами, по вершинам ребер. Сюда же через ввод 3 и изолированную кольцевую полость поступает также горючее (метан, природный газ). После смешения гомогенизированный поток в виде кольцевой струи истекает наружу, в камеру сгорания генератора синтез-газа. Так как при работе генератора синтез-газа в результате экзотермической реакции окисления происходит выделение тепла, и, следовательно, происходит нагрев корпуса и торцевого днища смесительного элемента, то корпус и торцевое днище охлаждаются, например, водой, которая подается и отводится через узел подвода и отвода охладителя 5. Для лучшей передачи тепла от корпуса и торцевого днища к воде они выполнены из высокотеплоемкостных материалов, например сплавов на основе меди и никеля, меди или никеля.

Предлагаемый коаксиальный смесительный элемент-горелка типа "гомогенизированный газ - газ", как единичный смесительный элемент, может быть использован для камер сгорания высокопроизводительных высокоскоростных генераторов синтез-газа с расходом горючего (углеводородного газа) - 0,375.. .3,75 т/ч, с давлением в восокоскоростной реакционной зоне 2,0...15 МПа.

Формула изобретения

1. Коаксиальный смесительный элемент-горелка типа "гомогенизированный газ-газ" для камер сгорания высокопроизводительных генераторов синтез-газа nH2 + CO, содержащий охлаждаемый цилиндрический корпус, охлаждаемое торцевое днище, узлы подвода газообразных горючего и окислителя, узлы подачи и отвода охлаждающего компонента, внутренние тракты раздельной подачи газообразных окислителя и горючего, отличающийся тем, что содержит устройство гомогенизации, выполненное в виде цилиндрических, снабженных ребрами, расположенных одна над другой и состыкованных по вершинам ребер оболочек, при этом внутренняя оболочка оснащена ребрами снаружи, а внешняя оболочка оснащена ребрами изнутри.

2. Коаксиальный смесительный элемент-горелка по п.1, отличающийся тем, что ребра, укрепленные на оболочках, ориентированы по одно- или многозаходной винтовой линии и направлены взаимно противоположно.

3. Коаксиальный смесительный элемент-горелка по пп.1 и 2, отличающийся тем, что суммарная площадь поперечного сечения каналов, образованных ребрами, равна 0,02 - 0,1 свободной площади торцевого днища.

4. Коаксиальный смесительный элемент-горелка по пп.1 - 3, отличающийся тем, что оболочки и внешняя стенка торцевого днища выполнены из высокотемпературных материалов, например из сплавов меди и никеля.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к стационарным газотурбинным двигателям, в частности к малоэмиссионным камерам сгорания

Изобретение относится к области энергетики

Изобретение относится к системе подачи топлива

Изобретение относится к устройствам для сжигания гавов в топках теплонапряженных технологических установок и может быть использовано в нефтехимической, энергетической, металлургической промышленности и в других отраслях народного хозяйства

Изобретение относится к устройствам для сжигания газов в топках теплонапряженных технологических установок и может быть использовано в нефтехимической, энергетической, металлургической промышленности и в других отраслях народного хозяйства

Изобретение относится к средствам термического воздействия и может использоваться, например, для деревообрабатывающей промышленности

Изобретение относится к теплоэнергетике

Изобретение относится к высокоэффективным устройствам для сжигания горючего в газообразном окислителе и предназначено преимущественно для бурения, разрушения или иной обработки крепчайших пород природного камня

Изобретение относится к технологии переработки углеводородного сырья, в частности к получению синтез-газа из углеводородного сырья, и может быть использовано в нефтегазодобывающих отраслях, в нефтяной и газовой промышленности и т.д

Изобретение относится к технологии переработки углеводородного сырья, в частности к получению синтез-газа из углеводородного сырья, и может быть использовано в нефтегазодобывающих отраслях, в нефтяной и газовой промышленности и т.д

Изобретение относится к реакции паровой конверсии диметилового эфира с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах

Изобретение относится к реакции паровой конверсии диметилового эфира с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах
Изобретение относится к области химической технологии, а более конкретно к способам получения водорода путем экзотермической реакции водяного пара с металлами

Изобретение относится к области извлечения и очистки водорода и может быть использовано в нефтеперерабатывающей, нефтехимической промышленности, производстве аммиака, метанола и металлургии

Изобретение относится к транспортной технологической установке частичного окисления и способу низкотемпературной конверсии низкоценных углеводородных потоков

Изобретение относится к технологии переработки углеводородного сырья, в частности к получению синтез-газа из углеводородного сырья

Изобретение относится к области органического синтеза, а именно к устройствам и технологии переработки газового углеводородного сырья в синтез-газ (nH2+CO) по методу неравновесного парциального окисления углеводородного газа кислородом
Наверх