Установка получения питьевой воды

 

Изобретение относится к области очистки воды, а именно к области безреагентной водоподготовки. Установка содержит последовательно установленные блок предварительной очистки, колонну озонирования с генератором озона, блок коагуляции, фильтр с плавающей загрузкой, накопительный бак и блок тонкой очистки, а также силовой блок, к которому подключен генератор озона. Установка обеспечивает повышение качества получаемой воды и может быть использована при снабжении питьевой водой потребителей, расположенных в местах временного пребывания или не требующих значительного расхода воды, в частности объектов малого градостроительства. Также изобретение может быть использовано в экстремальных условиях, в частности при внезапном отключении потребителя от сети водоснабжения. 13 з.п. ф-лы, 1 ил.

Изобретение относится к области очистки воды, а именно к области безреагентной водоподготовки, и может быть использовано при снабжении питьевой водой потребителей, расположенных в местах временного пребывания или не требующих значительного расхода воды, в частности объектов малого градостроительства.

Известна, в частности, блочная установка для очистки воды (RU, патент 2096342, C 02 F 1/78, 1997), содержащая блок (модуль) предварительной очистки, блок (модуль) озонирования, выполненный в виде первой и второй колонн озонирования, блок (модуль) электрокоагуляции, подключенный между колоннами озонирования, блок (модуль) финишной очистки, содержащий узел тонкой фильтрации и УФ - реактор, и силовой блок (модуль). При использовании установки исходную воду предварительно очищают с использованием блока предварительной очистки. Предварительно очищенную воду озонируют в два этапа, между которыми проводят обработку воды электрокоагуляцией, после второго этапа озонирования из воды удаляют соли с последующей финишной очисткой и УФ - обеззараживанием. Хотя в результате и получается вода, пригодная для питья, все же процесс нельзя признать оптимальным, поскольку практически полностью исключена очистка воды микроорганизмами. Использование двух стадий озонирования без учета состава и количества загрязнений приводит к повышению содержания озона в очищаемой среде после колонн озонирования и, соответственно, к гибели микроорганизмов в оборудовании, в том числе и фильтре тонкой очистки. Хотя в тексте описания и в зависимых пунктах формулы изобретения указано на границы использованных концентраций озона в обеих колоннах озонирования, а также на операцию разрушения, не прореагировавшего озона после второй стадии озонирования, все же в процессе эксплуатации было выяснено, что при незначительном количестве загрязнений и вызванном им малом расходе озона микроорганизмы в блоках оборудования погибают практически полностью и не участвуют в очистке воды. Кроме того, при этом происходит значительное воздействие озона на оборудование, что сокращает время работы оборудования и, следовательно, себестоимость очищаемой воды.

Техническая задача, решаемая посредством настоящего изобретения, состоит в разработке безреагентной установки очистки воды, позволяющей повысить качество получаемой воды.

Технический результат, получаемый в результате реализации изобретения, состоит в обеспечении возможности очистки значительно загрязненной воды до квалификации "питьевая" при снижении ее себестоимости.

Для достижения указанного технического результата предложено использовать установку, содержащую последовательно установленные блок предварительной очистки, колонну озонирования с генератором озона, блок коагуляции, фильтр с плавающей загрузкой, блок тонкой очистки, а также силовой блок, к которому подключен генератор озона, причем она дополнительно содержит накопительный бак, установленный между фильтром с плавающей загрузкой и блоком тонкой очистки. Блок предварительной очистки выполнен с возможностью, по меньшей мере, удаления механических частиц размером свыше 20 мкм, высота столба воды в колонне озонирования составляет не менее 4 метров. Накопительный бак выполнен с возможностью возвращения воздушно-озоновой смеси в любой из предыдущих блоков очистки, причем указанное возвращение осуществляют как за счет избыточного давления, создаваемого подушкой, так и за счет насоса, установленного на магистрали возврата. Блок тонкой очистки выполнен с возможностью отделения механических частиц свыше 5 мкм. Установка может дополнительно содержать камеру хлопьеобразования, расположенную между блоком коагуляции и фильтром с плавающей загрузкой, причем камера хлопьеобразования выполнена таким образом, что время нахождения в ней воды составляет не менее 4 минут. В установке может быть использован блок электрокоагуляции, причем площадь электродов электрокоагулятора составляет 1 м2 на расход очищаемой воды от 0,5 до 1,5 м3/ч, или блок коагуляции с использованием жидкостных коагулянтов. Установка может также дополнительно содержать блок обессоливания, установленный между блоком предварительной очистки и колонной озонирования. Предпочтительно блок обессоливания выполнен в виде электролизера и соединен с силовым блоком. Установка может дополнительно содержать перед и/или после фильтра с плавающей загрузкой аналогичные колонны озонирования, генераторы озона которых подключены к силовому блоку. Преимущественно накопительный бак выполнен с возможностью тангенциального ввода воды. При этом обычно накопительный бак выполнен таким образом, что время нахождения воды в накопительном баке составляет не менее 20 мин. Предпочтительно дополнительно на выходе блока тонкой очистки установлен блок УФ - обработки, подключенный к силовому блоку. Обычно мощность блока УФ - обработки составляет до 20 Вт на 1 м3/ч. Преимущественно блок предварительной очистки содержит гидроциклон и/или фильтр грубой очистки и/или маслоотделитель, а блок тонкой очистки выполнен в виде намотанного патронного фильтра или в виде модуля полых волокон. На выходе установки может быть установлен узел дополнительного обеззараживания, предпочтительно выполненный в виде блока хлорирования или фторирования.

Установка работает следующим образом. В процессе очистки вода поступает на стадию предварительной очистки, на которой происходит отделение грубодисперсных примесей и взвешенных частиц размером свыше 20 мкм. Затем при озонировании происходит уничтожение микроводорослей, частичное окисление органических загрязнений и окисление ионов металлов переменной валентности до высших степеней окисления. Озонированная вода поступает на стадию коагуляции, где происходит коагуляция органических примесей. При использовании фильтрации с плавающей загрузкой отделяют скоагулированные органические примеси, а также производят дополнительную очистку воды консорциумом микроорганизмов. Очищенная подобным образом вода поступает в накопительный бак. Не прореагировавший ранее озон, получившийся в результате разложения озона кислород и ранее растворенные в воде газы собираются в виде газовой подушки в верхней части накопительного бака. По газовой магистрали указанные газы могут быть переведены в любой из ранее использованных блоков очистки. Это позволяет исключить деструктор озона из конструкции накопительного бака, что уменьшает себестоимость установки, а также уменьшить концентрацию генерированного в колонне озона. Указанная подача может быть осуществлена посредством насоса, установленного на указанной магистрали. Тонкая фильтрация удаляет все загрязнения, перешедшие на предыдущих стадиях в нерастворимое состояние, а также производит дополнительную очистку воды от взвешенных частиц размером более 5 мкм и остаточных неорганических и органических примесей посредством консорциума микроорганизмов.

На стадии предварительной очистки возможно отделение органических гидрофобных загрязнений типа масел. При значительной минерализации исходной воды предпочтительно после блока предварительной очистки использовать блок обессоливания. При использовании камеры хлопьеобразования после блока коагуляции в указанной камере происходит практически полная коагуляция гидроксидов металлов и органических соединений. В случае значительных органических загрязнений до и/или после фильтра с плавающей загрузкой можно установить дополнительные колонны озонирования. При значительном микробиологическом загрязнении желательно на выходе установки после блока тонкой очистки установить блок УФ - обработки. Забор воды на очистку, а также движение воды по системе очистки предпочтительно осуществляют посредством насосов.

На чертеже приведена схема установки, преимущественно используемой при реализации способа.

Установка содержит погружной насос 1, гидроциклон 2, фильтр 3 грубой очистки, колонну 4 озонирования с генератором 5 озона, блок 6 электрокоагуляции, камеру 7 хлопьеобразования, фильтр 8 с плавающей загрузкой, накопительный бак 9, блок 10 тонкой очистки, блок УФ - очистки 11 и силовой модуль 12. Бак 9 соединен магистралью 13 с дополнительными, газовыми, входами гидроциклона 2, колонны 4 озонирования, блока 6 электрокоагуляции и фильтра 8 с плавающей загрузкой. На указанных дополнительных входах установлены вентили 14 - 17.

В качестве модуля электрокоагуляции и модуля обессоливания предпочтительно использовать электролизеры преимущественно с инертными электродами. В качестве силового модуля может быть использована дизель-генераторная установка или линия электропитания. Предпочтительно использовать электролизеры и УФ - реактор, выполненные с возможностью изменения режимов работы.

Установка в предпочтительном варианте реализации работает следующим образом.

Очищаемую воду из источника (открытый водоем или артезианская скважина) посредством насоса 1 подают в гидроциклон 2 и фильтр 3 грубой очистки, где происходит отделение нерастворимых примесей свыше 20 мкм, а также, возможно, масел. В очищенную подобным образом воду в колонне 4 озонирования вводят озон с концентрацией примерно 0,001 кг/м3. Происходит уничтожение болезнетворных микроорганизмов и микроводорослей, окисление ионов металлов в высшие степени окисления и частичное окисление органических соединений, присутствующих в воде. Вода из колонны 4 озонирования поступает в модуль 6 электрокоагуляции, в котором происходит начальная коагуляция коллоидных органических соединений. Затем вода поступает в камеру хлопьеобразования 7, в которой происходит окончательное образование хлопьев указанных загрязнений. Плавающая загрузка практически полностью задерживает коагулированные органические соединения. После фильтра 8 вода поступает в накопительный бак 9 и в блок 10 тонкой очистки, в котором механически и под действием консорциума микроорганизмов происходит окончательное выделение нерастворимых и растворимых примесей до уровня, соответствующего питьевой воде. Блок 11 УФ - очистки, расположенный на выходе блока 10, очищает воду от микроорганизмов, входящих в консорциум. Газовая смесь, содержащая озон, из накопительного бака 9 по магистрали 13 через любой из вентилей 14 - 17 поступает в любой из ранее используемых блоков очистки.

Использование установки позволяет производить питьевую воду без больших капитальных затрат и с низкой себестоимостью, поскольку отпадает необходимость даже в случае сильных загрязнений исходной воды дублировать блоки очистки.

Формула изобретения

1. Установка получения питьевой воды, содержащая последовательно установленные блок предварительной очистки, колонну озонирования с генератором озона, блок коагуляции, фильтр с плавающей загрузкой, блок тонкой очистки, а также силовой блок, к которому подключен генератор озона, отличающаяся тем, что она дополнительно содержит накопительный бак, установленный между фильтром с плавающей загрузкой и блоком тонкой очистки, причем блок предварительной очистки выполнен с возможностью, по меньшей мере, удаления механических частиц размером свыше 20 мкм, высота столба воды в колонне озонирования составляет не менее 4 м, накопительный бак выполнен с возможностью возвращения газовой смеси, содержащей озон, в любой из предшествующих блоков, а блок тонкой очистки выполнен с возможностью отделения механических частиц свыше 5 мкм.

2. Установка по п.1, отличающаяся тем, что она дополнительно содержит камеру хлопьеобразования, расположенную между блоком коагуляции и фильтром с плавающей загрузкой, причем камера хлопьеобразования выполнена таким образом, что время нахождения в ней воды составляет не менее 4 м.

3. Установка по п.1, отличающаяся тем, что использован блок электрокоагуляции, причем площадь электродов электрокоагулятора составляет 1 м2 на расход очищаемой воды от 0,5 до 1,5 м3/ч.

4. Установка по п.1, отличающаяся тем, что она дополнительно содержит блок обессоливания, установленный между блоком предварительной очистки и колонной озонирования.

5. Установка по п.4, отличающаяся тем, что блок обессоливания выполнен в виде электролизера и соединен с силовым блоком.

6. Установка по п.1, отличающаяся тем, что она дополнительно содержит перед и/или после фильтра с плавающей загрузкой аналогичные колонны озонирования, генераторы озона которых подключены к силовому блоку.

7. Установка по п.1, отличающаяся тем, что напорный бак выполнен с возможностью тангенциального ввода воды.

8. Установка по п.7, отличающаяся тем, что напорный бак выполнен таким образом, что время нахождения воды в напорном баке составляет не менее 20 мин.

9. Установка по п.1, отличающаяся тем, что дополнительно на выходе блока тонкой очистки установлен блок УФ - обработки, подключенный к силовому блоку.

10. Установка по п.9, отличающаяся тем, что мощность блока УФ - обработки составляет до 20 Вт на 1 м3/ч.

11. Установка по п.1, отличающаяся тем. что блок предварительной очистки содержит гидроциклон и/или фильтр грубой очистки и/или маслоотделитель.

12. Установка по п.1, отличающаяся тем, что блок тонкой очистки выполнен в виде намотанного патронного фильтра или в виде модуля полых волокон.

13. Установка по п.1, отличающаяся тем, что на выходе установки установлен узел дополнительного обеззараживания.

14. Установка по п.13, отличающаяся тем, что узел обеззараживания выполнен в виде блока хлорирования или фторирования.

РИСУНКИ

Рисунок 1

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 08.09.2002

Номер и год публикации бюллетеня: 9-2004

Извещение опубликовано: 27.03.2004        




 

Похожие патенты:

Изобретение относится к области очистки воды, а именно, к области безреагентной водоподготовки

Изобретение относится к способам очистки сточных вод от взвешенных, неорганических и органических веществ, в частности к очистке бытовых и промышленных стоков

Изобретение относится к очистке сточных вод красильно-отделочных производств флотацией, например, сточных вод текстильной промышленности и может быть использовано для очистки аналогичных сточных вод, содержащих красители, синтетические поверхностно-активные вещества (СПАВ) и текстильно-вспомогательные вещества

Изобретение относится к области обработки воды, может быть использовано при очистке сточных вод от эмульгированных нефтепродуктов, мелкодисперсных механических взвесей и продуктов биологической очистки в нефтеперерабатывающей и машиностроительной отраслях промышленности, теплоэнергетике , а также в схемах до

Изобретение относится к способу очистки сточных вод от эмульгированных масел, стабилизированных анионоактивными эмульгаторами

Изобретение относится к водоснабжению промыпшенных предприятий

Изобретение относится к опреснению соленой воды кристаллогидратным методом и может быть использовано в газогидратных опреснительных установках

Изобретение относится к спосо-« бам очистки подземных вод и может быть использовано в технологии очистки природных вод, а именно при очистке подземных вод от железа, марганца

Изобретение относится к способам очистки сточных вод, а именно к способам очистки сточных вод, содержащих высокие концентрации органических веществ, может быть использовано для очистки сточных вод крупных свиноводческих ко 4плексов ипозволяет повысить степень очистки за счет использования для доочистки фильтра с загрузкой из одубины

Изобретение относится к очистке сточных вод масложировой пpo ьшшeнности, содержащих натриевые соли жирных кислот и нейтральный жир, и позволяет интенсифицировать процесс фильтрации, улучшить свойства осадка с зрения его техиологичности и обеспечить возможность получения его В виде твердого утилизируемого продукта

Изобретение относится к области очистки воды, а именно, к области безреагентной водоподготовки

Изобретение относится к области очистки воды, а именно, к области безреагентной водоподготовки

Изобретение относится к области биологической очистки бытовых и близких к ним по составу производственных сточных вод от органических соединений, взвешенных веществ и аммонийного азота в анаэробном и аэробном режимах

Изобретение относится к области биологической очистки бытовых и близких к ним по составу производственных сточных вод от органических соединений, взвешенных веществ и аммонийного азота в анаэробном и аэробном режимах

Изобретение относится к биомеханической очистке сточных вод и может быть использовано в промышленных и городских очистных сооружениях

Изобретение относится к биомеханической очистке сточных вод и может быть использовано в промышленных и городских очистных сооружениях

Изобретение относится к биомеханической очистке сточных вод и может быть использовано в промышленных и городских очистных сооружениях

Изобретение относится к биомеханической очистке сточных вод и может быть использовано в промышленных и городских очистных сооружениях

Изобретение относится к области очистки сточных вод, в частности к способу получения щелочного реагентного раствора, применяемого при реагентном методе для нейтрализации и очистки стоков от ионов тяжелых металлов, например цинка, с кислой реакцией среды предприятий искусственного волокна и гальванических производств

Изобретение относится к области очистки сточных вод, в частности к способу получения щелочного реагентного раствора, применяемого при реагентном методе для нейтрализации и очистки стоков от ионов тяжелых металлов, например цинка, с кислой реакцией среды предприятий искусственного волокна и гальванических производств

Изобретение относится к области очистки воды, а именно, к области безреагентной водоподготовки
Наверх