Гравитационный вариометр

 

Использование: при разработке и создании средств измерения градиентов гравитационного поля. Сущность изобретения: конструкция гравитационного вариометра включает размещенное в герметичном корпусе коромысло с грузами и ферромагнитным сферическим якорем, статор бесконтактного подвеса коромысла в виде соосного ему управляемого электромагнита с катушкой, сердечником и цилиндрическим магнитопроводом, электростатические датчики момента, оптические датчики угла и датчик положения коромысла относительно корпуса. При этом ферромагнитный якорь размещен внутри электромагнита в зоне, охватываемой магнитопроводом бесконтактного подвеса, по меньшей мере на величину своего диаметра. В данном случае исключается рассеивание магнитного поля на якоре и неопределенность взаимосвязи магнитных полей, формируемых при взвешивании коромысла, с параметрами подвеса, а магнитная система в целом максимально приближена к идеальной схеме "точечного" подвеса. Технический результат: повышение точности и надежности гравитационного вариометра. 1 ил.

Изобретение относится к области точного приборостроения и может быть использовано при разработке и создании средств измерения градиентов гравитационного поля.

Известна конструкция гравитационного вариометра [1], чувствительный элемент которого содержит коромысло, выполненное в виде стержня с закрепленными на концах грузами. В центре коромысло подвешено на тонкой крутильной нити (торсионе). Недостатком всех модификаций (более 20) гравитационных вариометров с торсионным подвесом является невысокая точность, сложность изготовления, низкая надежность, неудовлетворительные массогабаритные характеристики.

Известна более современная конструкция гравитационного вариометра [2], в котором коромысло с грузами на концах и сферическим ферромагнитным якорем, зафиксированным на коромысле так, что геометрический центр якоря лежит на вертикальной оси симметрии коромысла, вывешено в электромагнитном подвесе. В конструкции предусмотрены оптические датчики угла, датчики положения и система автоматического регулирования тока в электромагните. Статор бесконтактного подвеса коромысла представляет собой соосный коромыслу осесимметричный управляемый электромагнит с катушкой и сердечником, заключенными в цилиндрический магнитопровод. В составе прибора статор размещен непосредственно над сферическим якорем.

Недостатками данной конструкции являются: 1) невысокая надежность вариометра, связанная с низкими вакуумными характеристиками, поскольку в герметизируемом корпусе размещены практически все основные элементы - коромысло, статор подвеса, датчики и т.д. Наличие в составе статора подвеса различного рода компаундов, клеевых и электроизолирующих элементов с органическими составляющими очевидным образом не позволяет обеспечить стабильный уровень разрежения внутри корпуса в процессе эксплуатации прибора; 2) сравнительно низкая точность гравитационного вариометра, обусловленная характером формирования магнитного поля в подвесе с открытым магнитопроводом. В этой конструкции магнитное поле взаимодействует достаточно эффективно только с верхней, обращенной в сторону электромагнита, частью сферического якоря. В остальной части якоря имеет место рассеивание магнитного поля, неопределенность в его распределении и характере влияния на параметры подвеса, что приводит к взаимодействию с якорем внешних магнитных полей, а также полей создаваемых элементами конструкции прибора, материалы которых содержат ферромагнитные примеси.

В качестве прототипа по наибольшему числу общих существенных признаков принят гравитационный вариометр [3], содержащий установленное в герметичном корпусе коромысло с грузами, жестко зафиксированный на коромысле ферромагнитный сферический якорь, центр которого лежит на вертикальной оси симметрии коромысла, расположенный снаружи корпуса статор бесконтактного подвеса коромысла в виде соосного ему осесимметричного управляемого электромагнита с катушкой, сердечником и цилиндрическим магнитопроводом, электростатические датчики угла, оптические датчики момента и датчик положения коромысла относительно корпуса. Рабочая поверхность сердечника выполнена в виде сферы с центром, расположенным на оси электромагнита и смещенным в сторону, противоположную якорю. В данном случае устраняется указанный для предыдущего аналога недостаток, связанный с низкими вакуумными характеристиками, однако имеет место невысокая точность и малая надежность гравитационного вариометра, что обусловлено; - неопределенностью взаимосвязи магнитных полей, формируемых в процессе взвешивания коромысла, с параметрами подвеса, поскольку не весь объем якоря находится в зоне электромагнита; - рассеиванием магнитного поля со стороны якоря, противоположной электромагниту.

Целью изобретения является повышение точности и надежности гравитационного вариометра.

Согласно изобретению, указанная цель достигается тем, что на корпусе выполнен цилиндрический карман, а на коромысле предусмотрена гнездовая выемка, расположенная внутри указанного кармана, снаружи которого установлен цилиндрический магнитопровод статора бесконтактного подвеса, ферромагнитный якорь зафиксирован в упомянутой выемке и размещен в зоне, охватываемой магнитопроводом, по меньшей мере на величину своего диаметра.

Сущность изобретения поясняется чертежом, на котором обозначены: 1 - коромысло, включающее гнездовую выемку с базовой посадочной поверхностью и жестко связанные, или выполненные заодно целое с гнездовой выемкой консольные элементы; 2 - ферромагнитный сферический якорь из сплава 81 НМА, жестко зафиксированный на базовой посадочной поверхности в гнездовой выемке коромысла 1 с размещением геометрического центра якоря на вертикальной оси симметрии коромысла 1; 3 - грузы, укрепленные на концах консольных элементов коромысла 1 посредством сварки или пайки; 4 - корпус из тонкостенного немагнитного материала, в котором размещается коромысло 1 с грузами 3 и якорем 2 и конфигурация которого соответствует конфигурации коромысла 1, в частности, корпус 4 содержит центральный цилиндрический карман, в котором полностью устанавливается гнездовая выемка коромысла 1 со сферическим якорем 2; 5 - крышка корпуса 4, привариваемая к нему на стадии сборки и герметизации вариометра;
6 - сердечник осесимметричного управляемого электромагнита бесконтактного подвеса коромысла 1 с якорем 2 и грузами 3, размещенный снаружи корпуса 4 с совпадением оси сердечника 6 и оси вертикальной симметрии коромысла 1;
7 - катушка электромагнита;
8 - цилиндрический магнитопровод электромагнита;
9 - датчик положения для управления вывешиванием коромысла 1 в подвесе;
10 - оптические датчики угла для измерения колебания коромысла 1 вокруг трех ортогональных осей;
11 - электростатические датчики момента для управления движением коромысла 1 в азимуте.

Функционирует гравитационный вариометр представленной конструкции следующим образом.

На катушку 7 электромагнита посредством соответствующей системы коммутации (не показана) подается электрическое напряжение постоянного тока, что обеспечивает реализацию бесконтактного подвеса коромысла 1 с якорем 2 и грузами 3 за счет формирования магнитного поля, создающего тяговую силу для уравновешивания коромысла 1.

Представленная конструкция вариометра предусматривает размещение якоря 2 в зоне, охватываемой цилиндрическим магнитопроводом 8 по меньшей мере на величину своего диаметра. Это достигается выполнением длины магнитопровода 8 большей, чем длина сердечника 6 и катушки 7, с образованием со стороны магнитопровода 8, обращенной к коромыслу 1, цилиндрической полости в составе электромагнита, в которой размещается карман корпуса 4 с находящимся в нем якорем 2. При этом конфигурация коромысла 1 должна предусматривать смещение консольных элементов коромысла 1 относительно базовой посадочной поверхности гнездовой выемки на требуемую величину, заведомо большую чем диаметр якоря 2, вдоль вертикальной оси симметрии коромысла 1, чтобы обеспечить условие расположения якоря 2 в зоне, охватываемой цилиндрическим магнитопроводом 8 статора подвеса, как это показано на чертеже.

Очевидной является необходимость согласования геометрических параметров коромысла 1, корпуса 4 и магнитопровода 8 исходя из реального значения диаметра сферического якоря 2, а именно:
1) превышение внутренним диаметром цилиндрической гнездовой выемки коромысла 1 и глубиной (высотой) этой выемки величины диаметра ферромагнитного сферического якоря 2;
2) превышение внутренним диаметром центрального цилиндрического кармана корпуса 4 величины наружного диаметра гнездовой выемки коромысла 1; а также большее значение глубины этого кармана по сравнению с высотой (наружной части) указанной выемки;
3) превышение внутренним диаметром цилиндрического магнитопровода 8 наружного диаметра центрального цилиндрического кармана корпуса 4, а также выполнение высоты магнитопровода заведомо большей суммы величин длины сердечника 7 с катушкой 6 и высоты указанного выше цилиндрического кармана корпуса 4.

Очевидно, что перечисленные конструктивные факторы в совокупности однозначно позволяют обеспечить условие размещения якоря 2 в зоне, охватываемой магнитопроводом 8, по меньшей мере на величину своего диаметра.

Однако возможен вариант конструкции прибора, когда в поперечной плоскости (перпендикулярной указанной оси симметрии) диаметр зоны охвата, т.е. диаметр внутреннего цилиндра магнитопровода 8 превышает наружный диаметр цилиндрического кармана корпуса 4 и перечисленные выше факторы в целом выполняются, но якорь 2 при этом может находиться в зоне, охватываемой магнитопроводом 8, например, только на 2/3 своего диаметра (в направлении, совпадающем с вертикальной осью симметрии коромысла 1). Отсюда следует, что помимо существенных признаков, характеризующих взаиморасположение конструктивных элементов гравитационного вариометра, основным является отличительный признак, определяющий ориентацию якоря относительно магнитопровода.

Таким образом, совокупность отличительных признаков с учетом взаиморасположения основных элементов вариометра обеспечивает как необходимые, так и достаточные условия для достижения поставленной цели изобретения - повышения точности и надежности гравитационного вариометра.

Предлагаемая конструкция магнитной системы в максимально возможной степени приближена к идеальной схеме "точечного" подвеса, где якорь располагается внутри электромагнита и его взаимодействие с другими источниками магнитного поля полностью отсутствуют.

Функционирование прибора осуществляется в автоматическом режиме, что обеспечивается использованием электростатических датчиков момента 11, являющихся основными элементами в автокомпенсационной схеме измерений гравитационного момента, и автоколлимационных датчиков 10 углов колебаний вывешенного коромысла 1, включенных в систему управления его движением (не показана) как элементы обратной связи.

При этом исключается рассеивание магнитного поля на якоре и неопределенность взаимосвязи магнитных полей, формируемых в процессе взвешивания коромысла, с параметрами подвеса, поскольку весь объем якоря находится в зоне электромагнита.

Технико-экономические преимущества заявляемого устройства по сравнению с базовым объектом, характеризующим существующий уровень техники и совпадающим в данном случае с прототипом, заключается в повышении точности и надежности гравитационного вариометра.

Экспериментальная проверка подтвердила эффективность предложенного технического решения, и в настоящее время разрабатывается техническая документация для серийного производства гравитационных вариометров данной конструкции.

Литература
1. Юзефович А.П., Огородов Л.В. Гравиметрия. М.: Наука, 1980 г.

2 Вольфсон Г.Б., Скалон А.И. О классе точности элементной базы в автокомпенсационных схемах вариационных вариометров. - Судостроительная промышленность, сер. Навигация и гироскопия. - 1991. - Вып. 1, с. 38-51.

3. Вольфсон Г.Б., Воробьев А.И., Денисов Г.Г. Экспериментальная оценка пороговой чувствительности гравитационного вариометра с электромагнитным подвесом - Гироскопия и навигация, 1995, N 2, с. 30 - 39.


Формула изобретения

Гравитационный вариометр, содержащий установленное в герметичном корпусе коромысло с грузами, жестко зафиксированный на коромысле ферромагнитный сферический якорь, центр которого расположен на вертикальной оси симметрии коромысла, статор бесконтактного подвеса коромысла в виде соосного ему осесимметричного управляемого электромагнита с катушкой, сердечником и цилиндрическим магнитопроводом, электростатические датчики момента, оптические датчики угла и датчик положения коромысла относительно корпуса, при этом электромагнит размещен вне герметичного корпуса, а рабочая поверхность сердечника выполнена в виде сферы с центром, расположенным на оси электромагнита и смещенным в сторону, противоположную якорю, отличающийся тем, что на корпусе выполнен цилиндрический карман, а на коромысле предусмотрена гнездовая выемка, расположенная внутри указанного кармана, снаружи которого установлен цилиндрический магнитопровод статора бесконтактного подвеса, ферромагнитный якорь зафиксирован в упомянутой выемке и размещен в зоне, охватываемой магнитопроводом, по меньшей мере на величину своего диаметра.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения градиентов гравитационного поля, как гравитационные вариометры и градиентометры

Изобретение относится к геофизическому прибо ростроению и изучению изменения вторых производных потенциала силытяжести во времени.Изобретение позволяет повысить точность измерения устройства

Изобретение относится к геофизическому приборостроению, в частности к устройствам для измерения высших производных потенциала силы тяжести

Изобретение относится к способам оперативного прогноза землетрясений и может быть использовано в системах наблюдений и обработки данных геофизических измерений

Изобретение относится к области гравитационной градиентометрии и может быть использовано для геофизических исследований, в частности для оперативного прогноза землетрясений

Изобретение относится к устройствам для геофизических измерений и может быть использовано для оперативного прогноза землетрясений

Изобретение относится к области сейсмологии и может быть использовано для оперативного определения места очага зарождающегося землетрясения. Сущность: устанавливают пары гравитационных вариометров, развернутых в азимуте друг относительно друга на угол, некратный 90˚. Причем пары вариометров устанавливают как минимум на трех сейсмических станциях, с которых определяют направления на очаг землетрясения и места пересечения этих направлений. Фиксируют момент времени изменения уровня крутящего момента в каждом вариометре. При изменении уровня крутящего момента в каждом вариометре измеряют углы колебаний крутильной системы относительно горизонтальных осей. Вычисляют значения арктангенса их отношения и результирующей амплитуды угла. По усредненному значению арктангенса определяют направление на очаг зарождающегося землетрясения. Устройство для реализации данного способа содержит в каждом гравитационном вариометре крутильную систему с гантельным коромыслом, датчиками (4) углов ее колебаний относительно трех осей и датчиками (5) момента системы измерения крутящего момента относительно вертикальной оси. Кроме того, в состав каждой пары гравитационных вариометров введено вычислительное устройство (7). Выходы вычислительного устройства (7) соединены с выходами датчиков (4) углов и входами датчиков (5) момента гравитационных вариометров. Технический результат: повышение точности оперативного предупреждения о месте очага зарождающегося землетрясения. 2 н.п.ф-лы, 2 з.п.ф-лы, 3 ил.

Изобретение относится к геофизическому приборостроению, а именно к гравитационным градиентометрам. Градиентометр состоит из квадруполя и гироблока, размещенных на платформе, стабилизированной в горизонтальной плоскости и вращающейся вокруг азимутального направления. Вращение платформы градиентометра используется для автокомпенсации погрешностей гироазимута. Градиентометр содержит вычислитель с блоком обработки сигнала квадруполя и контуром гировертикали. Второй контур вычислителя позволяет точно определять горизонтальные составляющие скорости вращения Земли, а блок азимута обеспечивает вычисление азимута. В вычислитель также, помимо блока обработки сигналов квадруполя, введены: ячейка индикации перехода сигнала через ноль, блок дифференцирования и индикации знака производной, ячейка «И» с двумя входами и выключатель. Технический результат изобретения заключается в повышении точности и эксплуатационных характеристик гравитационного градиентометра. 5 ил., 2 табл.

Изобретение относится к способам определения гравитационной постоянной вакуумированными крутильными весами. Сущность: притягивающие тела устанавливают на заданных позициях. Задают начальную амплитуду колебаний крутильных весов. Измеряют на всех позициях периоды, амплитуды колебаний весов, а также массы, размеры, положение всех взаимодействующих тел. Рассчитывают моменты притяжения рабочего тела весов притягивающими телами и момент его инерции вокруг вертикальной оси. Определяют гравитационную постоянную по системе двух дифференциальных уравнений движения. При этом выбирают оптимальную амплитуду колебаний и удерживают ее в течение длительного времени, для чего подбирают время задержки перемещения притягивающих тел на следующую позицию с помощью электропривода и узлов перемещения и фиксации. В процессе проведения эксперимента в паузах между измерениями проводят расчеты периодов и амплитуд колебаний, по которым определяют гравитационную постоянную. После этого при необходимости корректируют время задержки, которое обеспечит более точное сохранение амплитуды колебаний. Технический результат: уменьшение погрешности измерений гравитационной постоянной за счет ослабления влияния микросейсм и других дестабилизирующих факторов. 1 ил.

Изобретение относится к способам определения гравитационной постоянной вакуумированными крутильными весами. Сущность: притягивающие тела устанавливают на заданных позициях. Задают начальную амплитуду колебаний крутильных весов. Измеряют на всех позициях периоды, амплитуды колебаний весов, а также массы, размеры, положение всех взаимодействующих тел. Рассчитывают моменты притяжения рабочего тела весов притягивающими телами и момент его инерции вокруг вертикальной оси. Определяют гравитационную постоянную по системе двух дифференциальных уравнений движения. При этом заменяют шаровые грузы на цилиндрические с осевым отверстием, близким к диаметру коромысла. Диаметр грузов выбирают таким, при котором при малом угле отклонения моменты притяжения грузов при шаровой и цилиндрической форме в ближней к весам первой позиции притягивающих тел совпадают. Проверяют полученное равенство при других углах отклонения и позициях притягивающих тел. Собирают весы с цилиндрическим грузами, используя осевые отверстия для крепления коромысла с грузами по скользящей посадке. Расчеты гравитационной постоянной проводят по системе дифференциальных уравнений, в которых моменты притяжения имеют простые аналитические выражения для шаровой формы взаимодействующих тел. Уменьшают погрешность расчётов введением в программу двух массивов корректирующих множителей по углам отклонения весов и позициям притягивающих тел. Технический результат: определение гравитационной постоянной при цилиндрической форме грузов коромысла. 2 табл., 1 ил.
Наверх