Датчик магнитного поля

 

Изобретение относится к технике магнитных измерений. Датчик магнитного поля содержит источник света, устройство ввода излучения в оптическое волокно, оптическое волокно, в промежуточной части которого расположена магнитная пленка, на выходе волокна - фотоприемник, отличающийся тем, что между входным оптическим волокном и магнитооптическим материалом содержится расширитель светового пучка, входное оптическое волокно выполнено одномодовым, а выходное - многомодовым с ответвлением, фотоприемник расположен напротив ответвленной части оптического волокна. Технический результат заключается в повышении динамического диапазона и точности измерения напряженности магнитного поля. 1 ил.

Изобретение относится к технике магнитных измерений.

Известен датчик магнитного поля (Залысин С.П., Кубраков Н.Ф., Червоненкис А. Я. Магнитооптический датчик токов и полей //Тр. МЭИ. 1981. Вып. 557. с. 67-72.). Датчик содержит источник света, устройство ввода излучения в оптическое волокно, оптическое волокно, в промежуточной части которого расположены поляризатор, магнитная пленка, анализатор, на выходе волокна фотоприемник.

Недостатком датчика является низкая пространственная разрешающая способность.

Известен также датчик магнитного поля (Авторское свидетельство СССР N 1455332 МКИ4 G 02 F 1/09), содержащий источник света, устройство ввода излучения в оптическое волокно, оптическое волокно, в промежуточной части которого расположена магнитная пленка, на выходе волокна фотоприемник. Излучение из оптического волокна дифрагирует на пленке магнитооптического материала, период доменной структуры в которой связан с числовой апертурой волокна соотношением /d 2NA (- длина волны света, d - период доменной структуры, NA числовая апертура оптического волокна). Излучение нулевого порядка дифракции распространяется по оптическому волокну, излучение высших порядков дифракции рассеивается в оболочке оптического волокна. Магнитное поле уменьшает интенсивность высших порядков дифракции на магнитооптическом материале и увеличивает интенсивность нулевого порядка дифракции. Световой поток, регистрируемый фотоприемником, обратно пропорционален напряженности магнитного поля и по величине светового потока можно определить напряженность поля.

Недостатком датчика является низкая точность измерения напряженности магнитного поля, обусловленная низким динамическим диапазоном. В прототипе измеряется интенсивность нулевого порядка дифракции, прошедшего через выходное оптическое волокно, поэтому интенсивность излучения, попадающего на фотоприемник, изменяется в малых пределах (~1%). Малый диапазон изменения интенсивности регистрируемого фотосигнала уменьшает точность измерения.

В основу изобретения поставлена задача усовершенствовать датчик магнитного поля путем регистрации излучения высших порядков дифракции на магнитооптическом материале, что обеспечивает повышение динамического диапазона и точности измерения.

Поставленная задача решается тем, что в датчике магнитного поля, содержащем источник света, устройство ввода излучения в оптическое волокно, оптическое волокно, в промежуточной части которого расположен магнитооптический материал, фотоприемник, согласно изобретению содержится расширитель светового пучка, расположенный между входным оптическим волокном и магнитооптическим материалом, входное оптическое волокно выполнено одномодовым, а выходное многомодовым с ответвлением, в торце которого расположен фотоприемник.

Свет дифрагирует на доменной структуре в магнитооптическом материале. Излучение нулевого порядка дифракции возбуждает осевую моду в многомодовом оптическом волокне, которая распространяется по поставленной части многомодового оптического волокна. Продифрагировавший свет высших порядков дифракции возбуждает в многомодовом оптическом волокне моды высших порядков, излучение которых переходит в ответвленную часть многомодового оптического волокна. Интенсивность высших порядков дифракции на магнитооптическом материале изменяется в гораздо больших пределах (интенсивность нулевого порядка дифракции в магнитооптическом материале на ~1%, интенсивность высших на несколько порядков - от 0 до максимума), и соответственно, возрастает динамический диапазон регистрируемого оптического сигнала.

На фиг. 1 представлена оптическая схема устройства. 1 - лазерный источник света, 2 - устройство для ввода излучения в оптическое волокно, 3 - входное одномодовое оптическое волокно, 4 - расширитель светового пучка, 5 - магнитооптический материал, 6 - выходное многомодовое оптическое волокно, 7 - фотоприемник, расположены последовательно по ходу светового пучка, фотоприемник 7 расположен в торце ответвленной части выходного волокна 6.

Устройство работает следующим образом. Устройство для ввода излучения в оптическое волокно 2 направляет пучок излучения лазера 1 на торец входного одномодового оптического волокна 3. Излучение из оптического волокна 3 расширяется расширителем светового пучка 4, дифрагирует на доменной структуре в магнитооптическом материале 5. Излучение нулевого порядка дифракции возбуждает в выходном многомодовом оптическом волокне 6 осевую моду. Излучение высших порядков дифракции на магнитооптическом материале возбуждает в выходном многомодовом оптическом волокне 6 моды более высоких порядков. Выходное многомодовое оптическое волокно 6 пропускает излучение мод высших порядков через осветленную часть на фотоприемник 7, а излучение осевой моды распространяется через неразветвленную часть.

При помещении магнитооптического материала 5 в исследуемое магнитное поле произойдет перераспределение энергии между порядками дифракции и, соответственно, изменение модового состава многомодового оптического волокна 6. В результате изменится интенсивность светового потока, регистрируемого фотоприемником 7. Производят градуировку датчика в магнитом поле с известной напряженностью, и по полученной зависимости между величиной фотосигнала и напряженностью магнитного поля определяют напряженность исследуемого поля.

Фотоприемник 7 регистрирует не весь продифрагировавший свет, а лишь излучение высших порядков дифракции на магнитооптическом материале. Отношение полезного оптического сигнала ко всему световому потоку (динамический диапазон) возрастает, что повышает точность измерения напряженности магнитного поля. Кроме того, снятие требования на соотношение между апертурой оптического волокна и периодом доменной структуры /d 2NA, позволяет использовать магнитооптические материалы с более высокой дифракционной эффективностью и дополнительно повысить полезный сигнал, динамический диапазон, точность измерения.

Пример. Ответвление выходной части многомодового оптического волокна приварено к прямой части волокна. Излучение осевой моды в основном будет распространяться по прямой части волокна, излучение высших мод частично проникнет в ответвление. Динамический диапазон устройства повысится на 1 - 3 порядка и, соответственно, на 1 - 3 порядка уменьшатся ошибки измерения напряженности магнитного поля.

Пленка магнитооптического материала выполнена из висмутсодержащего граната состава (Bi, Lu)3(Fe, Ga)5O12 с дифракционной эффективностью порядка 5%, что дополнительно повышает динамический диапазон и точность измерения.

В заявляемом устройстве повышается точность измерения, повышается чувствительность к магнитному полою. Магнитооптические датчики магнитного поля обладают более высокой разрешающей способностью по сравнению например, с датчиками Холла. Кроме того, магнитооптические датчики магнитного поля не содержат токоведущих частей и могут быть использованы для измерения полей в агрессивных средах.

Формула изобретения

Датчик магнитного поля, содержащий источник света, устройство ввода излучения в оптическое волокно, оптическое волокно, в промежуточной части которого расположен магнитооптический материал, а в торце выходного оптического волокна - фотоприемник, отличающийся тем, что он содержит расширитель светового пучка, расположенный между входным оптическим волокном и магнитооптическим материалом, входное оптическое волокно выполнено одномодовым, а выходное - многомодовым с ответвлением, фотоприемник расположен в торце ответвленной части многомодового оптического волокна.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике магнитных измерений, в частности дефектоскопии ферромагнитных изделий

Изобретение относится к технике магнитных измерений

Изобретение относится к волоконной оптике и радиотехнике и может быть использовано для измерения плотности энергии волн

Изобретение относится к измерениям магнитного поля с помощью магнитооптических приборов, основанных на эффекте Фарадея, и может быть промышленно применимо для визуализации и топографирования пространственно неоднородных магнитных полей в труднодоступных участках электромагнитных систем: электрических машин, магнитных подвесок, герконов, в магнитных квадрупольных линзах ускорителей заряженных частиц и т.п

Изобретение относится к физике энергий высоких плотностей и предназначено для измерения силы тока в мощных электрофизических установках

Изобретение относится к измерительной технике

Изобретение относится к технике магнитных измерений

Изобретение относится к технике магнитных измерений, в частности дефектоскопии ферромагнитных изделий

Изобретение относится к измерительной технике, в частности к приборам для измерения силы тока, и предназначено для измерения однократного импульса тока с длительностью, лежащей в наносекундном диапазоне длительностей, в мощных электрофизических установках типа линейных импульсных ускорителей электронов

Изобретение относится к области электрических измерений и может быть использовано в измерительной технике высоких напряжений, в области релейной защиты и автоматики

Изобретение относится к средствам исследования свойств листового материала, например, банкнот

Изобретение относится к измерительной технике и может быть использовано для измерения тока в электрических цепях

Изобретение относится к технике измерений переменных и постоянных величин магнитных полей и может быть использовано для создания на его основе магнитооптических приборов

Изобретение относится к измерительной технике и может быть использовано для измерения импульсного тока и напряженности магнитного поля
Наверх