Уплотнительное устройство за компрессором газотурбинного двигателя

 

Изобретение предназначено для газотурбинного двигателя. Уплотнительное устройство содержит соединенный с валом компрессора лабиринт с уплотнительными гребешками, ответное ему сегментное сотовое кольцо, закрепленное на спрямляющем аппарате компрессора, а также дефлектор, образующий с кольцом щелеобразную полость. Щелеобразная полость на входе соединена с промежуточной ступенью компрессора последовательно через U-образный упругий в осевом направлении коллектор, щель переменной высоты перед раздаточной полостью и множество отверстий в дефлекторе, оси которых перпендикулярны охлаждаемой поверхности кольца. А диаметр каждого из отверстий выполнен увеличенным от щели переменной высоты к диску компрессора. При этом на фланце сотового кольца телескопически закреплено множество сотовых сегментов, каждый из которых зафиксирован в окружном и осевом направлениях с помощью отогнутого усика. Такое выполнение уплотнительного устройства позволит повысить эффективность охлаждения и регулирования радиальных зазоров уплотнительного устройства путем струйного и равномерного охлаждения поверхности фланца. 3 ил.

Изобретение относится к газотурбинным двигателям.

Известно уплотнительное устройство за компрессором турбореактивного двигателя, содержащее лабиринт, соединенный с валом компрессора и снабженный уплотнительными гребешками, и ответное им сегментное кольцо, закрепленное фланцем на спрямляющем аппарате компрессора с образованием разгрузочной полости, сообщенной с наружным контуром двигателя [1].

Известное устройство имеет увеличенный радиальный зазор между роторными и статорными элементами уплотнения на установившихся режимах работы двигателя. Это связано с тем, что на переходных режимах работы двигателя из-за разного темпа нагрева статорных и роторных элементов уплотнения происходит уменьшение радиального зазора до нуля или врезание гребешков уплотнения в уплотнение статора, в результате чего уплотнение изнашивается.

Наиболее близким к заявляемому является уплотнительное устройство с активным управлением величиной радиального зазора между статорными и роторными элементами уплотнения путем охлаждения статорных элементов уплотнения холодным воздухом на основных режимах работы двигатели [2].

Недостатком известной конструкции, принятой за прототип, является низкая эффективность охлаждения статорных элементов уплотнения, так как охлаждающий воздух движется в щелеобразной полости, образованной сотовым фланцем и дефлектором, параллельно охлаждаемым стенкам с низкими коэффициентами теплоотдачи. Также недостатком этой конструкции является неравномерное охлаждение сотового фланца при неравномерном точечном подводе охлаждающего воздуха в промежуточную коллекторную полость. Кроме того, в случае износа сотового уплотнителя на сотовом лабиринте радиальный зазор по лабиринтному уплотнению увеличивается, что приводит к ухудшению параметров двигателя, и для восстановления зазоров необходима переборка двигателя с заменой элементов уплотнения.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении эффективности охлаждения и регулирования радиальных зазоров уплотнительного устройства путем струйного и равномерного охлаждения поверхности фланца.

Сущность технического решения заключается в том, что в уплотнительном устройстве за компрессором ГТД, содержащем соединенный с валом компрессора лабиринт с уплотнительными гребешками, ответное ему сегментное сотовое кольцо, закрепленное на спрямляющем аппарате компрессора, а также дефлектор, образующий с кольцом щелеобразную полость, согласно изобретению, щелеобразная полость на входе соединена с промежуточной ступенью компрессора последовательно через U-образный упругий в осевом направлении коллектор, щель переменной высоты перед раздаточной полостью и множество отверстий в дефлекторе, оси которых перпендикулярны охлаждаемой поверхности кольца, а диаметр каждого из отверстий от щели переменной высоты к диску компрессора выполнен увеличенным, при этом на фланце сотового кольца телескопически закреплено множество сотовых сегментов, каждый из которых зафиксирован в окружном и осевом направлениях с помощью отогнутого усика.

Наличие U-образного упругого в осевом направлении коллектора обеспечивает осевой натяг между осевым выступом дефлектора и радиальной стенкой сотового кольца на всех режимах работы двигателя, тем самым сохраняется постоянной площадь пазов осевого выступа, а значит и скорость истекающего из них воздуха, т.е. интенсивность обдува.

Увеличение диаметра каждого из отверстий в дефлекторе от щели переменной высоты к диску компрессора компенсирует гидравлические потери в щелеобразной полости и обеспечивает равномерное охлаждение фланца в осевом направлении.

Крепление на фланце множества сотовых сегментов способствует защите фланца от его контакта с утечками горячего закомпрессорного воздуха, что позволяет снижать температуру фланца при его струйном обдуве, тем самым уменьшается величина радиального зазора.

На фиг.1 изображен продольный разрез уплотнительного устройства; на фиг.2 - элемент I на фиг.1 в увеличенном виде; на фиг.3 - элемент II на фиг.2 в увеличенном виде.

Уплотнительное устройство 1 состоит из лабиринта 2 с уплотнительными гребешками 3, установленного на валу 4 и закрепленного с помощью байонетного соединения 5 на последнем диске 6 компрессора 7. Ответное лабиринту 2 сегментное сотовое кольцо 8 состоит из фланца 9, на котором телескопически закреплено множество сотовых сегментов 10, каждый из которых зафиксирован относительно фланца 9 в окружном и в осевом направлениях с помощью отогнутого усика 11. Сотовое кольцо 8 закреплено с помощью болтов 12 на спрямляющем аппарате 13 компрессора 7 и выполнено с тонкостенным упругим элементом 14, который позволяет при изменении температуры фланца 9 радиально перемещаться фланцу 9 совместно с сегментами 10. Со стороны компрессора на упругом элементе 14 выполнена теплоизоляция 15. Дефлектор 16 выполнен с множеством отверстий 17, оси которых перпендикулярны охлаждаемой поверхности 18. Диаметр каждого из отверстий 17 последовательно увеличивается по направлению от щели переменной высоты 19 к диску 6 компрессора 7. Между фланцем 9 и дефлектором 16 образована щелеобразная полость Г, которая соединена на выходе с разгрузочной закомпрессорной полостью А низкого давления, сообщенной с атмосферой через стойки камеры сгорания.

На входе через множество отверстий 17 щелеобразная полость Г соединена с раздаточной полостью Б, которая через щель 19 переменной высоты h соединена с коллекторной полостью В, образованной упругим U-образным коллектором 20 и далее - через трубы 21, стойку 22 камеры сгорания (на фиг. не показано), патрубок 23, дроссельную шайбу 24 с внутренним диаметром d и трубу 25 с промежуточной ступенью компрессора 7 (промежуточная ступень на компрессоре не показана).

Дефлектор 16 фиксируется в радиальном направлении относительно упругого элемента 14 кольца 8 с помощью радиального ребра 26 с пазами 27 и в осевом направлении - с помощью осевого выступа 28 с пазами 29, опираясь в радиальную стенку 30 сотового кольца 8. С другой стороны дефлектор 16 с помощью фланца 31, болтов 32 и гаек 33 крепится к кольцу 8. Ребро 34 переменной высоты дефлектора 16 разделяет между собой раздаточную полость Б и коллекторную полость В и позволяет обеспечить равномерный подвод охлаждающего воздуха и охлаждение фланца 9 при неравномерном точечном подводе охлаждающего воздуха в коллекторную полость В. Плоские радиальные стенки 35 и 36 U-образного коллектора 20 позволяют выполнить коллектор 20 упругим в осевом направлении - для обеспечения осевого натяга между осевым выступом 28 дефлектора 16 и радиальной стенкой 30 сотового кольца 8 на всех режимах работы двигателя.

Работает устройство следующим образом. При работе двигателя для уменьшения радиального зазора по уплотнительному устройству включается отбор из-за промежуточной ступени (на фиг. не показано) компрессора 7 охлаждающего воздуха, который по трубе 25 через дроссельную шайбу 24, патрубок 23, одну из стоек 22 камеры сгорания (на фиг. не показано) и трубу 21 поступает, например, местно в коллекторную полость В коллектора 20, где растекается в окружном направлении и через щель 19 переменной высоты h равномерно поступает в раздаточную полость Б, из которой через множество отверстий 17 и пазы 27 и 29 струями, перпендикулярно к поверхности 18, натекает на эту поверхность, осуществляя интенсивное охлаждение фланца 9.

Из щелеобразной полости Г охлаждающий воздух истекает в разгрузочную полость А. За счет упругости U-образного коллектора 20 сохраняется постоянной площадь пазов 29, а значит и скорость истекающего из них воздуха, т.е. интенсивность обдува. Увеличивающийся диаметр отверстий 17 от щели 19 к выступу 26 компенсирует гидравлические потери в щелеобразной полости Г и обеспечивает равномерное охлаждение фланца 9 в осевом направлении. С наработкой двигателя элементы уплотнительного устройства, например, за счет эррозионного износа перетекающим через уплотнение воздухом с загрязняющими частицами, радиальный зазор может увеличиваться. Для компенсации этого увеличения зазора при регламентных работах дроссельная шайба 24 заменяется на аналогичную с большим внутренним диаметром d, интенсивность охлаждения фланца 9 возрастает и зазор на рабочих режимах уменьшается.

Таким образом, параметры двигателя восстанавливаются. Влияние радиального зазора на параметры двигателя чрезвычайно велико, так как это прямые потери закомпрессорного воздуха. Например, для ГТУ-25П (изд.87) при радиальном зазоре =0,2 мм утечки через уплотнительное устройство составляют 1,6% от расхода воздуха через двигатель, что ухудшает экономичность двигателя на 2,4% и повышает температуру газа перед турбиной на 25oС. Установка сотовых сегментов 10 на фланце 9 существенно снижает стоимость ремонта износившегося уплотнительного устройства, так как в этом случае заменяются только сегменты 10 на фланце 9. Кроме того, сегменты 10 защищают фланец 9 от его контакта с утечками горячего закомпрессорного воздуха, что дает возможность в большей степени снижать температуру фланца 9 при его струйном обдуве, а значит и уменьшать величину зазора . Коэффициенты теплоотдачи при лобовом струйном обдуве поверхности примерно в 2 раза выше, чем при охлаждении этой поверхности воздухом, текущим вдоль нее. Т.е., применяя струйный обдув, можно при таком же расходе охлаждающего воздуха существенно улучшить эффективность охлаждения, или, как в нашем случае - эффективность регулирования радиальных зазоров уплотнения.

Источники информации 1. Авиационный двухконтурный турбореактивный двигатель Д-30, М.: Машиностроение, 1971 г., стр.19.

2. Патент RU 2036312 С1 от 27.05.95 г. - прототип.

Формула изобретения

Уплотнительное устройство за компрессором газотурбинного двигателя, содержащее соединенный с валом компрессора лабиринт с уплотнительными гребешками, ответное ему сегментное сотовое кольцо, закрепленное на спрямляющем аппарате компрессора, а также дефлектор, образующий с кольцом щелеобразную полость, отличающееся тем, что щелеобразная полость на входе соединена с промежуточной ступенью компрессора последовательно через U-образный упругий в осевом направлении коллектор, щель переменной высоты перед раздаточной полостью и множество отверстий в дефлекторе, оси которых перпендикулярны охлаждаемой поверхности кольца, а диаметр каждого из отверстий выполнен увеличенным от щели переменной высоты к диску компрессора, при этом на фланце сотового кольца телескопически закреплено множество сотовых сегментов, каждый из которых зафиксирован в окружном и осевом направлениях с помощью отогнутого усика.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям

Изобретение относится к лабиринтным уплотнительным устройствам газотурбинных двигателей авиационного, а также наземного применения

Изобретение относится к области машиностроения, в частности к способам герметизации в турбостроении

Изобретение относится к уплотняющему элементу для уплотнения зазора, который образуется между двумя термично подвижными относительно друг друга деталями, каждая с противоположной соответствующей канавкой детали, в частности в газотурбинной установке, а также газотурбинная установка с уплотняющими элементами

Изобретение относится к авиационному двигателестроению, а именно к уплотнительным устройствам за компрессором газотурбинного двигателя

Изобретение относится к двигателестроению и может быть использовано в авиации, а также в наземных установках

Изобретение относится к газотурбостроению и может быть использовано в авиационных, судовых и автомобильных газотурбинных двигателях (ГТД)

Изобретение относится к области авиационных и промышленных установок

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и позволяет повысить надежность ГТД путем уплотнения масляных полостей подшипниковых опор двухярусным лабиринтным уплотнением

Изобретение относится к притирающимся уплотнениям

Изобретение относится к роторной машине

Изобретение относится к двигателестроению наземного и авиационного применения

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и позволяет повысить экономичность двигателя путем уменьшения утечек охлаждающего воздуха через уплотнение.Газотурбинный двигатель выполнен с лабиринтным уплотнением ротора турбины с сопловым аппаратом, расположенным между дисками турбины.Лабиринтное уплотнение расположено в зоне перехода ступицы диска к его полотну, а между полотном диска, на входе в лабиринтное уплотнение, на диаметре D, со стороны выходных кромок рабочих лопаток ротора и осевым кольцевым выступом лабиринта выполнен кольцевой щелевой жиклер шириной h, соединенный на входе с полостью подвода охлаждающего воздуха, а на выходе - с газовой полостью, при этом h/D = 0,0001....0,002

Изобретение относится к машиностроению и может быть использовано для герметизации газовоздушных трактов газотурбинной установки в составе газоперекачивающих агрегатов газотурбинных электростанций

Изобретение относится к машиностроению и может быть использовано для герметизации газовоздушных трактов газотурбинной установки в составе газоперекачивающих агрегатов (ГПА), газотурбинных электростанций (ГТЭС)
Наверх