Рентгеновский толщиномер

 

Изобретение относится к области рентгеновской измерительной техники. В толщиномере введена обратная связь, автоматически управляемая величиной выходного электрического сигнала усилителя компенсационного канала, технически обеспеченная введением исполнительного механизма, выполнением и размещением калиброванного фильтра с равномерно увеличивающейся (уменьшающейся) толщиной в направлении угловой координаты плоскости фильтра. Техническим результатом изобретения является точность измерений. 1 ил.

Изобретение относится к измерительной технике, в частности к рентгеновским измерителям толщины, и может быть использовано при измерении толщины лент полотен и тому подобных из различных материалов как в статике, так и динамике.

Известны рентгеновские измерители толщины, содержащие рентгеновский источник излучения, приемник излучения, калиброванный поглотитель (фильтр), измеряемое изделие (полоса), два усилителя, источник опорного напряжения и блок сравнения, соединенный первым и вторым входами соответственно с выходом первого усилителя, и выходом источника опорного напряжения [1].

Диапазон контроля таких измерителей ограничен, точность их недостаточна особенно в начальный момент времени вследствие несовпадения экспоненциальных характеристик поглощения импульсов излучения материалом и толщиной изделия.

Наиболее близким техническим решением к заявляемому представляется рентгеновский измеритель толщины, содержащий рентгеновский излучатель, два приемника излучения, между которыми размещено контролируемое изделие, два усилителя, первый из которых соединен входом с выходом первого приемника излучения, второй - входом с выходом второго приемника излучения и последовательно соединенные схему обработки и регистратор, схема обработки включает вычитатель, сумматор и делитель, первые входы вычитателя и сумматора подключены к выходу первого усилителя, вторые входы вычитателя и сумматора - к выходу второго усилителя, выходы вычитателя и сумматора связаны с первым и вторым входами делителя соответственно, выход которого является выходом схемы обработки [2].

Диапазон измерения толщин изделий этого толщиномера расширен, однако его надежность недостаточна, а точность измерения толщин в пределах заданного диапазона не одинакова. Наличие этих недостатков объясняется тем, что при большом диапазоне измеряемых толщин (порядка 0,05-10 мм) очень трудно обеспечить во всем диапазоне оптимальный коэффициент поглощения рентгеновского потока материалом контролируемого изделия и одновременно большое количество квантов , достаточных для получения заданной точности измерения толщины с погрешностью не хуже, например, 0,1%.

В приведенном техническом решении увеличение квантов для больших толщин достигается за счет увеличения напряжения питания рентгеновского излучателя. Однако это приводит к уменьшению величины , а следовательно, к понижению точности измерения, перенасыщению приемников излучения, что также вызывает понижение точности.

Сущность изобретения заключается в том, что в толщиномере, содержащем рентгеновский излучатель, два приемника излучения, между которыми размещено контролируемое изделие, калиброванный фильтр, расположенный между источником излучения и первым приемником излучения, два усилителя, первый из них, соединенный входом с выходом первого приемника излучения, второй - входом с выходом второго приемника, последовательно соединенные схему обработки и регистратор, блок сравнения и источник опорного напряжения, схема обработки включает вычитатель, сумматор и делитель, первые входы вычитателя и сумматора подключены к выходу первого усилителя, вторые входы вычитателя и сумматора - к выходу второго усилителя, выходы вычитателя и сумматора связаны с первым и вторым входами делителя соответственно, выход которого является выходом схемы обработки, первый и второй входы блока сравнения соединены соответственно с выходом первого усилителя и выходом источника опорного напряжения, введен исполнительный механизм, при этом калиброванный фильтр выполнен в виде диска с равномерно-увеличивающей (уменьшающей) толщиной по угловой координате плоскости фильтра, причем центральная ось Х-Х вращения фильтра смещена параллельно от центральной оси Хо-Хо рентгеновского потока излучателя на величину половины радиуса фильтра, вход исполнительного механизма подключен к выходу блока сравнения, а выход исполнительного механизма кинематически связан с осью Х-Х вращения фильтра.

Техническим результатом изобретения является постоянство точности измерения в заданном диапазоне контролируемых толщин за счет автоматической регулировки толщины калиброванного фильтра.

На фиг. 1 показана структурная схема рентгеновского толщиномера. Он содержит рентгеновский излучатель 1, первый и второй приемники излучения (ионизационные камеры) 2, 4, между которыми расположено контролируемое изделие (лента, полоса) 3, первый и второй усилители 5 и 6, последовательно соединенные схему 7 обработки и регистратор 8, калиброванный фильтр 12, выполненный в виде диска с равномерно-увеличивающей (уменьшающей) толщиной по угловой координате плоскости диска, блок сравнения 13, источник 14 опорного напряжения и исполнительный механизм 15.

Калиброванный фильтр 12 размещен между источником 1 рентгеновского излучения и первым приемником 2 излучения, центральная ось Х-Х вращения фильтра 12 смещена параллельно от центральной оси Хо-Хо рентгеновского потока излучателя 1 на величину половины радиуса R калиброванного фильтра 12. Схема 7 обработки включает вычитатель 9, сумматор 10 и делитель 11. Первые входы вычитателя 9 и сумматора 10 подключены к выходу первого усилителя 5, вторые входы вычитателя 9 и сумматора 10 - к выходу второго усилителя 6, выходы вычитателя 9 и сумматора 10 соединены соответственно с первым и вторым входами делителя 11, выход которого является выходом схемы 7 обработки, а ее первым входом - первые входы вычитателя 9 и сумматора 10, а вторым входом - вторые входы вычитателя 9 и сумматора 10.

Первый вход блока 13 сравнения соединен с выходом первого усилителя 5, второй вход блока 13 сравнения соединен с выходом источника 14 опорного напряжения, выход блока 13 сравнения подключен к входу исполнительного механизма 15, выход которого связан кинематически с осью Х-Х вращения фильтра.

В качестве источника 1 излучения может быть рентгеновская трубка. Приемники 2 и 4 излучения или ионизационные камеры предназначены для преобразования рентгеновского излучения в электрическое напряжение (сигнал). В качестве регистратора 8 может быть монитор.

Калиброванный фильтр 12, выполненный в виде диска с равномерно-увеличивающей (уменьшающей) толщиной по угловой координате плоскости диска, предназначен для частичного подавления мягкого рентгеновского излучения, что обеспечивает заданную точность контроля изменяющейся толщины изделия. Для получения точности измерения не хуже 0,1% для толщин изделия, изменяющихся, например, от 0,5 до 10 мм, пределы изменения толщины фильтра рекомендуется выбирать от 0,1 до 1,0 мм.

Исполнительный механизм 15 выполнен в виде реверсивного двигателя, связанного своим валом через муфту с валом калиброванного фильтра 12 (на фиг. валы и муфта не показаны, причем под валом фильтра 12 понимается его ось Х-Х вращения).

Блок 13 сравнения, источник 14 опорного напряжения и исполнительный механизм 15 предназначены для автоматического вращения фильтра 12 вокруг.оси Х-Х на заданный угол в зависимости от установки напряжения на рентгеновском излучателе 1, величина которого устанавливается в свою очередь в зависимости от требуемой толщины контролируемого изделия.

Работа толщиномера.

В первый и второй приемники 2 и 4 излучения поступает поток рентгеновского излучения от излучателя 1 через калиброванный фильтр 12, при этом на приемник 4 рентгеновский поток поступает дополнительно продетектированный контролируемым изделием 3. Излучение в первом приемнике 2 преобразуется в электрические импульсы с амплитудой, определяемой толщиной калиброванного фильтра 12, а излучение во втором приемнике 4 преобразуется в электрические импульсы с амплитудой, определяемой параметрами излучаемого рентгеновского потока излучателем 1, модулированного одновременно толщиной калиброванного фильтра 12 и контролируемого изделия 3.

Электрические сигналы с приемников 2 и 4 усиливаются в усилителях 5 и 6 и подаются на входы схемы 7 обработки и дополнительно с выхода усилителя 5 сигнал подается на первый вход блока 13 сравнения, на второй вход которого поступает электрический сигнал от источника 14 опорного напряжения. В блоке 13 сравниваются сигнал изменяющейся амплитуды (про модулированный толщиной колиброванного фильтра 12), снимаемый с выхода первого усилителя 5, и сигнал постоянной амплитуды, снимаемый с источника 14 опорного напряжения. В зависимости от величины и знака электрического сигнала на выходе блока 13 сравнения исполнительный механизм 15 приводит во вращение калиброванный фильтр 12 либо по часовой стрелке, например, при положительном знаке сигнала на выходе блока 13, либо против - при отрицательном знаке сигнала - на определенный угол, обеспечивающий по оси Хо-Хо рентгеновского потока определенную калиброванную толщину фильтра 12, которая позволяет автоматически обеспечить оптимальное для измеряемой толщины изделия 3 количество квантов , зарегистрированных приемниками 2 и 4 излучения, и оптимальную величину коэффициента поглощения рентгеновского потока материалом изделия 3.

Кроме того, электрические сигналы, одновременно поступая с усилителей 5 и 6 на входы вычитателя 9 и сумматора 10, где в них сигналы приемников 2 и 4 вычитаются и складываются, а затем в делителе 11 разностный сигнал делится на суммарный сигнал, в результате чего на выходе схемы 7 обработки получают электрический сигнал, пропорциональный толщине контролируемого изделия 3. Этот сигнал отображается на регистраторе 8.

Положительным результатом изобретения является постоянство точности измерения толщины в заданном диапазоне.

Источники информации 1. А.с. СССР N718700, кл. G 01 В 15/02, БИ N8, 1980.

2. Патент РФ N2159408, кл. G O1 В 15/02, БИ N32, 2000.

Формула изобретения

Рентгеновский толщиномер, содержащий рентгеновский излучатель, два приемника излучения, между которыми размещено контролируемое изделие, два усилителя, первый - входом соединенный с выходом первого приемника излучения, второй - входом с выходом второго приемника, калиброванный фильтр, расположенный между источником излучения и первым приемником излучения, причем центральная ось Х-Х вращения фильтра смещена параллельно от центральной оси Х00 рентгеновского потока излучателя на величину половины радиуса фильтра, исполнительный механизм кинематически связанный с осью Х-Х вращения фильтра, последовательно соединенные схему обработки и регистратор, блок сравнения и источник опорного напряжения, причем первый и второй входы блока сравнения соединены соответственно с выходом первого усилителя и выходом источника опорного напряжения, схема обработки включает вычитатель, сумматор и делитель, первые входы вычитателя и сумматора соединены с выходом первого усилителя, вторые входы вычитателя и сумматора - с выходом второго усилителя, выходы вычитателя и сумматора связаны с первым и вторым входами делителя соответственно, выход делителя является выходом схемы обработки, отличающийся тем, что фильтр выполнен в виде диска с равномерно увеличивающейся (уменьшающейся) толщиной в направлении угловой координаты плоскости фильтра, а вход исполнительного механизма подключен к выходу блока сравнения.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к рентгеновским толщиномерам, и может быть использовано при измерении толщины из различных металлических листовых изделий, получаемых на прокатных станах, а также толщины бумаги, картонной и резиновых лент как в статике, так и динамике

Изобретение относится к области атомной техники и может быть использовано для контроля толщины слоя циркония или его сплавов или для дефектоскопии материалов различных изделий

Изобретение относится к измерительной технике и может быть использовано для измерения толщины лент и полос из различных материалов как в статике, так и в динамике

Изобретение относится к области измерительной техники и может быть использовано для измерения толщины объектов

Изобретение относится к измерительной технике и предназначено для контроля толщины лент, полотен и т.п

Изобретение относится к неразрушающему контролю и может быть использовано для определения толщины стенок, образованных криволинейными поверхностями (цилиндрическими, сферическими и др.) в деталях сложной несимметричной формы

Изобретение относится к контрольно-измерительной технике и предназначено для измерения толщины покрытий на подложках

Изобретение относится к области неразрушающего контроля тепловыделяющих элементов (твэлов) ядерных реакторов, изготовленных в виде трехслойных труб различного профиля и предназначено для автоматического измерения координат активного слоя, разметки границ твэлов, измерения равномерности распределения активного материала по всей площади слоя в процессе изготовления

Изобретение относится к средствам неразрушающего контроля, а именно к радиоизотопным приборам для измерения толщины или поверхностной плотности материала или его покрытия

Изобретение относится к оптической контрольно-измерительной технике и может быть использовано для измерения толщины остаточных пленок в окнах малых (~1 мкм) размеров, полученных любым способом в произвольной многослойной структуре на подложке с известными оптическими характеристиками Сущность изобретения заключается в измерении стандартным методом эллипсометрии эллипсометрических параметров в нулевом порядке дифракции для по крайней мере четырех рядом расположенных участков структуры со сформированными в ней окнами, имеющих различное соотношение площадей "исходная многослойная структура-окна", с последующим вычислением с их помощью толщины остаточной пленки в окнах по специальному алгоритму

Изобретение относится к радиационной технике

Изобретение относится к способам определения толщины неметаллических материалов и может быть использовано для определения толщины пленки нефтепродукта, разлитой на водной поверхности

Изобретение относится к дистанционным пассивным способам измерения толщины пленки нефтепродукта, включая и саму нефть, и может быть использовано для устранения неоднозначности при измерении толщины пленки в миллиметровом диапазоне длин волн

Изобретение относится к измерительной технике, в частности к рентгеновским толщиномерам, и может быть использовано при измерении толщины металлических лент, полос на прокатном стане, а также толщины бумажной, картонной и резиновой лент как в статике, так и динамике

Изобретение относится к взрывным работам, точнее - к области изготовления детонирующих шнуров

Изобретение относится к рентгеновской измерительной технике

Изобретение относится к рентгеновской измерительной технике

Изобретение относится к рентгеновской измерительной технике

Изобретение относится к области поверочной контрольно-измерительной и инспекционной техники, в частности к средствам автоматизированной диагностики рентгеновских толщиномеров, и может быть использовано при контроле листового и фасонного проката в динамике
Наверх